/** * The RIOT scheduler implementation * * Copyright (C) 2013 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License. See the file LICENSE in the top level directory for more * details. * * TODO: setup dependency from SCHEDSTATISTICS to MODULE_HWTIMER * * @ingroup kernel * @{ * @file * @author Kaspar Schleiser * @} */ #include #include #include #include #include #include #if SCHEDSTATISTICS #include "hwtimer.h" #endif #define ENABLE_DEBUG (0) #include volatile int num_tasks = 0; volatile unsigned int sched_context_switch_request; volatile tcb_t *sched_threads[MAXTHREADS]; volatile tcb_t *active_thread; volatile int thread_pid; volatile int last_pid = -1; clist_node_t *runqueues[SCHED_PRIO_LEVELS]; static uint32_t runqueue_bitcache = 0; #if SCHEDSTATISTICS static void (*sched_cb) (uint32_t timestamp, uint32_t value) = NULL; schedstat pidlist[MAXTHREADS]; #endif void sched_init() { printf("Scheduler..."); int i; for (i = 0; i < MAXTHREADS; i++) { sched_threads[i] = NULL; #if SCHEDSTATISTICS pidlist[i].laststart = 0; pidlist[i].runtime_ticks = 0; pidlist[i].schedules = 0; #endif } active_thread = NULL; thread_pid = -1; for (i = 0; i < SCHED_PRIO_LEVELS; i++) { runqueues[i] = NULL; } printf("[OK]\n"); } void sched_run() { sched_context_switch_request = 0; tcb_t *my_active_thread = (tcb_t *)active_thread; if (my_active_thread) { if (my_active_thread->status == STATUS_RUNNING) { my_active_thread->status = STATUS_PENDING; } #ifdef SCHED_TEST_STACK if (*((unsigned int *)my_active_thread->stack_start) != (unsigned int) my_active_thread->stack_start) { printf("scheduler(): stack overflow detected, task=%s pid=%u\n", my_active_thread->name, my_active_thread->pid); } #endif } #ifdef SCHEDSTATISTICS unsigned long time = hwtimer_now(); if (my_active_thread && (pidlist[my_active_thread->pid].laststart)) { pidlist[my_active_thread->pid].runtime_ticks += time - pidlist[my_active_thread->pid].laststart; } #endif DEBUG("\nscheduler: previous task: %s\n", (my_active_thread == NULL) ? "none" : my_active_thread->name); if (num_tasks == 0) { DEBUG("scheduler: no tasks left.\n"); while (!num_tasks) { /* loop until a new task arrives */ ; } DEBUG("scheduler: new task created.\n"); } my_active_thread = NULL; while (!my_active_thread) { int nextrq = number_of_lowest_bit(runqueue_bitcache); clist_node_t next = *(runqueues[nextrq]); DEBUG("scheduler: first in queue: %s\n", ((tcb_t *)next.data)->name); clist_advance(&(runqueues[nextrq])); my_active_thread = (tcb_t *)next.data; thread_pid = (volatile int) my_active_thread->pid; #if SCHEDSTATISTICS pidlist[my_active_thread->pid].laststart = time; pidlist[my_active_thread->pid].schedules++; if ((sched_cb) && (my_active_thread->pid != last_pid)) { sched_cb(hwtimer_now(), my_active_thread->pid); last_pid = my_active_thread->pid; } #endif #ifdef MODULE_NSS if (active_thread && active_thread->pid != last_pid) { last_pid = active_thread->pid; } #endif } DEBUG("scheduler: next task: %s\n", my_active_thread->name); if (my_active_thread != active_thread) { if (active_thread != NULL) { /* TODO: necessary? */ if (active_thread->status == STATUS_RUNNING) { active_thread->status = STATUS_PENDING ; } } sched_set_status((tcb_t *)my_active_thread, STATUS_RUNNING); } active_thread = (volatile tcb_t *) my_active_thread; DEBUG("scheduler: done.\n"); } #if SCHEDSTATISTICS void sched_register_cb(void (*callback)(uint32_t, uint32_t)) { sched_cb = callback; } #endif void sched_set_status(tcb_t *process, unsigned int status) { if (status & STATUS_ON_RUNQUEUE) { if (!(process->status & STATUS_ON_RUNQUEUE)) { DEBUG("adding process %s to runqueue %u.\n", process->name, process->priority); clist_add(&runqueues[process->priority], &(process->rq_entry)); runqueue_bitcache |= 1 << process->priority; } } else { if (process->status & STATUS_ON_RUNQUEUE) { DEBUG("removing process %s from runqueue %u.\n", process->name, process->priority); clist_remove(&runqueues[process->priority], &(process->rq_entry)); if (!runqueues[process->priority]) { runqueue_bitcache &= ~(1 << process->priority); } } } process->status = status; } void sched_switch(uint16_t current_prio, uint16_t other_prio, int in_isr) { DEBUG("%s: %i %i %i\n", active_thread->name, (int)current_prio, (int)other_prio, in_isr); if (current_prio >= other_prio) { if (in_isr) { sched_context_switch_request = 1; } else { thread_yield(); } } } void sched_task_exit(void) { DEBUG("sched_task_exit(): ending task %s...\n", active_thread->name); dINT(); sched_threads[active_thread->pid] = NULL; num_tasks--; sched_set_status((tcb_t *)active_thread, STATUS_STOPPED); active_thread = NULL; cpu_switch_context_exit(); }