/* * Copyright (C) 2016 Kaspar Schleiser * * This file is subject to the terms and conditions of the GNU General Public * License v2. See the file LICENSE for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MTU 9000 #define TRACE(x) #define TTY_TIMEOUT_MS (500) #define case_baudrate(val) \ case val: \ *baudrate = B ## val; \ break #define BAUDRATE_DEFAULT B115200 #define TCP_DEV "tcp:" #define IOTLAB_TCP_PORT "20000" /* Size of serial write buffer */ #define SERIAL_BUFFER_SIZE 64 static void usage(void) { fprintf(stderr, "Usage: ethos [baudrate]\n"); fprintf(stderr, " ethos tcp: [port]\n"); } static void checked_write(int handle, void *buffer, int nbyte) { while (nbyte > 0) { ssize_t res = write(handle, buffer, nbyte); if (res <= 0) { fprintf(stderr, "write to fd %i failed: %s\n", handle, strerror(errno)); return; } nbyte -= res; } } int set_serial_attribs(int fd, int speed, int parity) { struct termios tty; memset (&tty, 0, sizeof tty); if (tcgetattr (fd, &tty) != 0) { perror ("error in tcgetattr"); return -1; } cfsetospeed (&tty, speed); cfsetispeed (&tty, speed); tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; /* 8-bit chars*/ /* disable IGNBRK for mismatched speed * tests; otherwise receive break*/ /* as \000 chars*/ tty.c_iflag &= ~IGNBRK; /* disable break processing*/ tty.c_lflag = 0; /* no signaling chars, no echo,*/ /* no canonical processing*/ tty.c_oflag = 0; /* no remapping, no delays*/ tty.c_cc[VMIN] = 0; /* read doesn't block*/ tty.c_cc[VTIME] = TTY_TIMEOUT_MS / 100; /* 0.5 seconds read timeout*/ /* in tenths of a second*/ tty.c_iflag &= ~(IXON | IXOFF | IXANY); /* shut off xon/xoff ctrl*/ tty.c_cflag |= (CLOCAL | CREAD); /* ignore modem controls,*/ /* enable reading*/ tty.c_cflag &= ~(PARENB | PARODD); /* shut off parity*/ tty.c_cflag |= parity; tty.c_cflag &= ~CSTOPB; tty.c_cflag &= ~CRTSCTS; cfmakeraw(&tty); if (tcsetattr (fd, TCSANOW, &tty) != 0) { perror("error from tcsetattr"); return -1; } return 0; } void set_blocking(int fd, int should_block) { struct termios tty; memset (&tty, 0, sizeof tty); if (tcgetattr (fd, &tty) != 0) { perror("error from tggetattr"); return; } tty.c_cc[VMIN] = should_block ? 1 : 0; tty.c_cc[VTIME] = TTY_TIMEOUT_MS / 100; /* 0.5 seconds read timeout*/ /* in tenths of a second*/ if (tcsetattr (fd, TCSANOW, &tty) != 0) perror("error setting term attributes"); } /** * @brief Escape char definitions * @{ */ #define LINE_FRAME_DELIMITER (0x7E) #define LINE_ESC_CHAR (0x7D) #define LINE_FRAME_TYPE_DATA (0x00) #define LINE_FRAME_TYPE_TEXT (0x01) #define LINE_FRAME_TYPE_HELLO (0x02) #define LINE_FRAME_TYPE_HELLO_REPLY (0x03) /** @} */ typedef enum { WAIT_FRAMESTART, IN_FRAME, IN_ESCAPE } line_state_t; typedef struct { line_state_t state; int frametype; size_t framebytes; char frame[MTU]; char local_l2_addr[6]; char remote_l2_addr[6]; } serial_t; /************************************************************************** * tun_alloc: allocates or reconnects to a tun/tap device. The caller * * needs to reserve enough space in *dev. * **************************************************************************/ int tun_alloc(char *dev, int flags) { struct ifreq ifr; int fd, err; if( (fd = open("/dev/net/tun", O_RDWR)) < 0 ) { perror("Opening /dev/net/tun"); return fd; } memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = flags; if (*dev) { strncpy(ifr.ifr_name, dev, IFNAMSIZ); } if( (err = ioctl(fd, TUNSETIFF, (void *)&ifr)) < 0 ) { perror("ioctl(TUNSETIFF)"); close(fd); return err; } strcpy(dev, ifr.ifr_name); return fd; } static void _handle_char(serial_t *serial, char c) { serial->frame[serial->framebytes] = c; serial->framebytes++; } static int _serial_handle_byte(serial_t *serial, char c) { switch (serial->state) { case WAIT_FRAMESTART: if (c == LINE_FRAME_DELIMITER) { TRACE("frame start"); serial->state = IN_FRAME; serial->frametype = 0; serial->framebytes = 0; } break; case IN_FRAME: if (c == LINE_ESC_CHAR) { TRACE("i esc"); serial->state = IN_ESCAPE; } else if (c == LINE_FRAME_DELIMITER) { if (!serial->framebytes) { TRACE("i del unexp"); } else { TRACE("i del"); serial->state = WAIT_FRAMESTART; return serial->framebytes; } } else { _handle_char(serial, c); } break; case IN_ESCAPE: if (c == (LINE_FRAME_DELIMITER ^ 0x20)) { _handle_char(serial, LINE_FRAME_DELIMITER); } else if (c == (LINE_ESC_CHAR ^ 0x20)) { _handle_char(serial, LINE_ESC_CHAR); } else if (c == (LINE_FRAME_TYPE_TEXT ^ 0x20)) { TRACE("esc txt"); serial->frametype = LINE_FRAME_TYPE_TEXT; } else if (c == (LINE_FRAME_TYPE_HELLO ^ 0x20)) { TRACE("esc hello"); serial->frametype = LINE_FRAME_TYPE_HELLO; } else if (c == (LINE_FRAME_TYPE_HELLO_REPLY ^ 0x20)) { TRACE("esc hello_reply"); serial->frametype = LINE_FRAME_TYPE_HELLO_REPLY; } else if (c == LINE_FRAME_DELIMITER) { TRACE("esc -del"); } serial->state = IN_FRAME; break; } return 0; } static void _write_escaped(int fd, char* buf, ssize_t n) { /* * Certain USB-to-UART adapters/drivers will immediately send a USB packet * with a single byte instead of buffering internally when the application * does writes one byte at a time. Since USB Full Speed can only send 1 * packet per 1 ms, this causes huge latencies for the network, because each * byte of data will then add at least 1 ms on the latency. * Observed on NXP OpenSDAv2 (Kinetis FRDM boards), both CMSIS/mbed DAPlink * and Segger Jlink firmware are affected. */ /* Our workaround is to prepare the data to send in a local buffer and then * call write() on the buffer instead of one char at a time */ uint8_t out[SERIAL_BUFFER_SIZE]; size_t buffered = 0; while(n--) { unsigned char c = *buf++; if (c == LINE_FRAME_DELIMITER || c == LINE_ESC_CHAR) { out[buffered++] = LINE_ESC_CHAR; c ^= 0x20; if (buffered >= SERIAL_BUFFER_SIZE) { checked_write(fd, out, buffered); buffered = 0; } } out[buffered++] = c; if (buffered >= SERIAL_BUFFER_SIZE) { checked_write(fd, out, buffered); buffered = 0; } } if (buffered) { checked_write(fd, out, buffered); } } static void _send_hello(int serial_fd, serial_t *serial, unsigned type) { char delim = LINE_FRAME_DELIMITER; char head[] = { LINE_FRAME_DELIMITER, LINE_ESC_CHAR, (type ^ 0x20) }; checked_write(serial_fd, head, sizeof(head)); checked_write(serial_fd, serial->local_l2_addr, 6); checked_write(serial_fd, &delim, 1); } static void _clear_neighbor_cache(const char *ifname) { char tmp[20 + IFNAMSIZ]; snprintf(tmp, sizeof(tmp), "ip neigh flush dev %s", ifname); if (system(tmp) < 0) { fprintf(stderr, "error while flushing device neighbor cache\n"); } } static int _parse_baudrate(const char *arg, unsigned *baudrate) { if (arg == NULL) { *baudrate = BAUDRATE_DEFAULT; return 0; } switch(strtol(arg, (char**)NULL, 10)) { case 9600: *baudrate = B9600; break; case 19200: *baudrate = B19200; break; case 38400: *baudrate = B38400; break; case 57600: *baudrate = B57600; break; case 115200: *baudrate = B115200; break; /* the following baudrates might not be available on all platforms */ #ifdef B234000 case_baudrate(230400); #endif #ifdef B460800 case_baudrate(460800); #endif #ifdef B500000 case_baudrate(500000); #endif #ifdef B576000 case_baudrate(576000); #endif #ifdef B921600 case_baudrate(921600); #endif #ifdef B1000000 case_baudrate(1000000); #endif #ifdef B1152000 case_baudrate(1152000); #endif #ifdef B1500000 case_baudrate(1500000); #endif #ifdef B2000000 case_baudrate(2000000); #endif #ifdef B2500000 case_baudrate(2500000); #endif #ifdef B3000000 case_baudrate(3000000); #endif #ifdef B3500000 case_baudrate(3500000); #endif #ifdef B4000000 case_baudrate(4000000); #endif default: return -1; } return 0; } int _parse_tcp_arg(char *name, char *port_arg, char **host, char **port) { /* Remove 'tcp:' */ name = &name[sizeof(TCP_DEV) - 1]; /* Set default if NULL */ if (!port_arg) { port_arg = IOTLAB_TCP_PORT; } *host = name; *port = port_arg; return 0; } /* Adapted from 'getaddrinfo' manpage example */ int _tcp_connect(char *host, char *port) { int sfd = -1; struct addrinfo hints, *result, *rp; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; int s = getaddrinfo(host, port, &hints, &result); if (s) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); return -1; } /* getaddrinfo() returns a list of address structures. Try each address until we successfully connect(2). If socket(2) (or connect(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != NULL; rp = rp->ai_next) { sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) continue; if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1) break; close(sfd); } freeaddrinfo(result); if (rp == NULL) { fprintf(stderr, "Could not connect to '%s:%s'\n", host, port); return -1; } return sfd; } int _set_socket_timeout(int sfd) { struct timeval timeout = { .tv_sec = 0, .tv_usec = TTY_TIMEOUT_MS * 1000, }; if (setsockopt(sfd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout, sizeof(timeout)) == -1) { perror("setsockopt failed\n"); return 1; } if (setsockopt(sfd, SOL_SOCKET, SO_SNDTIMEO, (char *)&timeout, sizeof(timeout)) == -1) { perror("setsockopt failed\n"); return 1; } return 0; } int _open_tcp_connection(char *name, char *port_arg) { char *host; char *port; int ret = _parse_tcp_arg(name, port_arg, &host, &port); if (ret) { fprintf(stderr, "Error while parsing tcp arguments\n"); return -1; } int sfd = _tcp_connect(host, port); if (_set_socket_timeout(sfd)) { fprintf(stderr, "Error while setting socket options\n"); return -1; } return sfd; } int _open_serial_connection(char *name, char *baudrate_arg) { unsigned baudrate = 0; if (_parse_baudrate(baudrate_arg, &baudrate) == -1) { fprintf(stderr, "Invalid baudrate specified: %s\n", baudrate_arg); return 1; } int serial_fd = open(name, O_RDWR | O_NOCTTY | O_SYNC); if (serial_fd < 0) { fprintf(stderr, "Error opening serial device %s\n", name); return -1; } set_serial_attribs(serial_fd, baudrate, 0); set_blocking(serial_fd, 1); return serial_fd; } int _open_connection(char *name, char* option) { if (strncmp(name, TCP_DEV, strlen(TCP_DEV)) == 0) { return _open_tcp_connection(name, option); } else { return _open_serial_connection(name, option); } } int main(int argc, char *argv[]) { char inbuf[MTU]; char *serial_option = NULL; serial_t serial = {0}; if (argc < 3) { usage(); return 1; } if (argc >= 4) { serial_option = argv[3]; } char ifname[IFNAMSIZ]; strncpy(ifname, argv[1], IFNAMSIZ); int tap_fd = tun_alloc(ifname, IFF_TAP | IFF_NO_PI); if (tap_fd < 0) { return 1; } int serial_fd = _open_connection(argv[2], serial_option); if (serial_fd < 0) { fprintf(stderr, "Error opening serial device %s\n", argv[2]); return 1; } fd_set readfds; int max_fd = (serial_fd > tap_fd) ? serial_fd : tap_fd; fprintf(stderr, "----> ethos: sending hello.\n"); _send_hello(serial_fd, &serial, LINE_FRAME_TYPE_HELLO); fprintf(stderr, "----> ethos: activating serial pass through.\n"); _send_hello(serial_fd, &serial, LINE_FRAME_TYPE_HELLO); int stdin_open = 1; while(1) { int activity; FD_ZERO(&readfds); if (stdin_open) { FD_SET(STDIN_FILENO, &readfds); } FD_SET(tap_fd, &readfds); FD_SET(serial_fd, &readfds); activity = select( max_fd + 1 , &readfds , NULL , NULL , NULL); if ((activity < 0) && (errno != EINTR)) { perror("select error"); } if (FD_ISSET(serial_fd, &readfds)) { ssize_t n = read(serial_fd, inbuf, sizeof(inbuf)); if (n > 0) { char *ptr = inbuf; while (n--) { size_t res = _serial_handle_byte(&serial, *ptr++); if (res) { switch (serial.frametype) { case LINE_FRAME_TYPE_DATA: checked_write(tap_fd, serial.frame, serial.framebytes); break; case LINE_FRAME_TYPE_TEXT: checked_write(STDOUT_FILENO, serial.frame, serial.framebytes); break; case LINE_FRAME_TYPE_HELLO: case LINE_FRAME_TYPE_HELLO_REPLY: if (serial.framebytes == 6) { memcpy(serial.remote_l2_addr, serial.frame, 6); if (serial.frametype == LINE_FRAME_TYPE_HELLO) { fprintf(stderr, "----> ethos: hello received\n"); _send_hello(serial_fd, &serial, LINE_FRAME_TYPE_HELLO_REPLY); } else { fprintf(stderr, "----> ethos: hello reply received\n"); } _clear_neighbor_cache(ifname); } break; } memset(&serial, '\0', sizeof(serial)); } } } else { fprintf(stderr, "lost serial connection.\n"); exit(1); } } if (FD_ISSET(tap_fd, &readfds)) { ssize_t res = read(tap_fd, inbuf, sizeof(inbuf)); if (res <= 0) { fprintf(stderr, "error reading from tap device. res=%zi\n", res); continue; } char delim = LINE_FRAME_DELIMITER; checked_write(serial_fd, &delim, 1); _write_escaped(serial_fd, inbuf, res); checked_write(serial_fd, &delim, 1); } if (FD_ISSET(STDIN_FILENO, &readfds)) { ssize_t res = read(STDIN_FILENO, inbuf, sizeof(inbuf)); if (res == 0) { fprintf(stderr, "EOF from stdin\n"); if (isatty(STDIN_FILENO)) { /* EOF from the terminal means good bye! */ fprintf(stderr, "Bye!\n"); break; } else { /* Ignore EOF when stdin is not a terminal */ close(STDIN_FILENO); stdin_open = 0; } continue; } if (res < 0) { fprintf(stderr, "error reading from stdio. res=%zi\n", res); continue; } if (res) { char delim = LINE_FRAME_DELIMITER; char head[] = { LINE_FRAME_DELIMITER, LINE_ESC_CHAR, (LINE_FRAME_TYPE_TEXT ^ 0x20) }; checked_write(serial_fd, head, sizeof(head)); _write_escaped(serial_fd, inbuf, res); checked_write(serial_fd, &delim, 1); } } } return 0; }