/* * Copyright (C) 2014-2016 Freie UniversitĂ€t Berlin * 2015 Kaspar Schleiser * 2015 FreshTemp, LLC. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam0_common * @ingroup drivers_periph_spi * @{ * * @file * @brief Low-level SPI driver implementation * * @author Thomas Eichinger * @author Troels Hoffmeyer * @author Hauke Petersen * @author Joakim NohlgĂ„rd * @author Kaspar Schleiser * @author Benjamin Valentin * * @} */ #include "cpu.h" #include "mutex.h" #include "assert.h" #include "periph/spi.h" #include "pm_layered.h" #define ENABLE_DEBUG 0 #include "debug.h" /** * @brief Array holding one pre-initialized mutex for each SPI device */ static mutex_t locks[SPI_NUMOF]; #ifdef MODULE_PERIPH_DMA struct dma_state { dma_t tx_dma; dma_t rx_dma; }; static struct dma_state _dma_state[SPI_NUMOF]; static DmacDescriptor DMA_DESCRIPTOR_ATTRS tx_desc[SPI_NUMOF]; static DmacDescriptor DMA_DESCRIPTOR_ATTRS rx_desc[SPI_NUMOF]; #endif /** * @brief Shortcut for accessing the used SPI SERCOM device */ static inline SercomSpi *dev(spi_t bus) { return (SercomSpi *)spi_config[bus].dev; } static inline bool _is_qspi(spi_t bus) { #ifdef MODULE_PERIPH_SPI_ON_QSPI return (void*)spi_config[bus].dev == (void*)QSPI; #else (void)bus; return false; #endif } static inline void _qspi_clk(unsigned on) { #ifdef QSPI /* enable/disable QSPI clock */ MCLK->APBCMASK.bit.QSPI_ = on; #else (void)on; #endif } static inline void poweron(spi_t bus) { if (_is_qspi(bus)) { _qspi_clk(1); } else { sercom_clk_en(dev(bus)); } } static inline void poweroff(spi_t bus) { if (_is_qspi(bus)) { _qspi_clk(0); } else { sercom_clk_dis(dev(bus)); } } static inline void _reset(SercomSpi *dev) { dev->CTRLA.reg |= SERCOM_SPI_CTRLA_SWRST; while (dev->CTRLA.reg & SERCOM_SPI_CTRLA_SWRST) {} #ifdef SERCOM_SPI_STATUS_SYNCBUSY while (dev->STATUS.bit.SYNCBUSY) {} #else while (dev->SYNCBUSY.bit.SWRST) {} #endif } static inline void _disable(SercomSpi *dev) { dev->CTRLA.reg = 0; #ifdef SERCOM_SPI_STATUS_SYNCBUSY while (dev->STATUS.bit.SYNCBUSY) {} #else while (dev->SYNCBUSY.reg) {} #endif } static inline void _enable(SercomSpi *dev) { dev->CTRLA.bit.ENABLE = 1; #ifdef SERCOM_SPI_STATUS_SYNCBUSY while (dev->STATUS.bit.SYNCBUSY) {} #else while (dev->SYNCBUSY.reg) {} #endif } static inline bool _use_dma(spi_t bus) { #ifdef MODULE_PERIPH_DMA return (spi_config[bus].tx_trigger != DMA_TRIGGER_DISABLED) && (spi_config[bus].rx_trigger != DMA_TRIGGER_DISABLED); #else (void)bus; return false; #endif } static inline void _init_dma(spi_t bus, const volatile void *reg_rx, volatile void *reg_tx) { if (!_use_dma(bus)) { return; } #ifdef MODULE_PERIPH_DMA _dma_state[bus].rx_dma = dma_acquire_channel(); _dma_state[bus].tx_dma = dma_acquire_channel(); dma_setup(_dma_state[bus].tx_dma, spi_config[bus].tx_trigger, 0, false); dma_setup(_dma_state[bus].rx_dma, spi_config[bus].rx_trigger, 1, true); dma_prepare(_dma_state[bus].rx_dma, DMAC_BTCTRL_BEATSIZE_BYTE_Val, (void*)reg_rx, NULL, 1, 0); dma_prepare(_dma_state[bus].tx_dma, DMAC_BTCTRL_BEATSIZE_BYTE_Val, NULL, (void*)reg_tx, 0, 0); #else (void)reg_rx; (void)reg_tx; #endif } /** * @brief QSPI peripheral in SPI mode * @{ */ #ifdef QSPI static void _init_qspi(spi_t bus) { /* reset the peripheral */ QSPI->CTRLA.bit.SWRST = 1; QSPI->CTRLB.reg = QSPI_CTRLB_MODE_SPI | QSPI_CTRLB_CSMODE_LASTXFER | QSPI_CTRLB_DATALEN_8BITS; /* set up DMA channels */ _init_dma(bus, &QSPI->RXDATA.reg, &QSPI->TXDATA.reg); } static void _qspi_acquire(spi_mode_t mode, spi_clk_t clk) { /* datasheet says SCK = MCK / (BAUD + 1) */ /* but BAUD = 0 does not work, assume SCK = MCK / BAUD */ uint32_t baud = CLOCK_CORECLOCK > (2 * clk) ? (CLOCK_CORECLOCK + clk - 1) / clk : 1; /* bit order is reversed from SERCOM SPI */ uint32_t _mode = (mode >> 1) | (mode << 1); _mode &= 0x3; QSPI->CTRLA.bit.ENABLE = 1; QSPI->BAUD.reg = QSPI_BAUD_BAUD(baud) | _mode; } static inline void _qspi_release(void) { QSPI->CTRLA.bit.ENABLE = 0; } static void _qspi_blocking_transfer(const void *out, void *in, size_t len) { const uint8_t *out_buf = out; uint8_t *in_buf = in; for (size_t i = 0; i < len; i++) { uint8_t tmp = out_buf ? out_buf[i] : 0; /* transmit byte on MOSI */ QSPI->TXDATA.reg = tmp; /* wait until byte has been sampled on MISO */ while (QSPI->INTFLAG.bit.RXC == 0) {} /* consume the byte */ tmp = QSPI->RXDATA.reg; if (in_buf) { in_buf[i] = tmp; } } } #else /* !QSPI */ void _init_qspi(spi_t bus); void _qspi_acquire(spi_mode_t mode, spi_clk_t clk); void _qspi_release(void); void _qspi_blocking_transfer(const void *out, void *in, size_t len); #endif /** @} */ /** * @brief SERCOM peripheral in SPI mode * @{ */ static void _init_spi(spi_t bus, SercomSpi *dev) { /* reset all device configuration */ _reset(dev); /* configure base clock */ sercom_set_gen(dev, spi_config[bus].gclk_src); /* enable receiver and configure character size to 8-bit * no synchronization needed, as SERCOM device is not enabled */ dev->CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN; /* set up DMA channels */ _init_dma(bus, &dev->DATA.reg, &dev->DATA.reg); } static void _spi_acquire(spi_t bus, spi_mode_t mode, spi_clk_t clk) { /* configure bus clock, in synchronous mode its calculated from * BAUD.reg = (f_ref / (2 * f_bus) - 1) * with f_ref := CLOCK_CORECLOCK as defined by the board * to mitigate the rounding error due to integer arithmetic, the * equation is modified to * BAUD.reg = ((f_ref + f_bus) / (2 * f_bus) - 1) */ const uint8_t baud = ((sam0_gclk_freq(spi_config[bus].gclk_src) + clk) / (2 * clk) - 1); /* configure device to be master and set mode and pads, * * NOTE: we could configure the pads already during spi_init, but for * efficiency reason we do that here, so we can do all in one single write * to the CTRLA register */ const uint32_t ctrla = SERCOM_SPI_CTRLA_MODE(0x3) /* 0x3 -> master */ | SERCOM_SPI_CTRLA_DOPO(spi_config[bus].mosi_pad) | SERCOM_SPI_CTRLA_DIPO(spi_config[bus].miso_pad) | (mode << SERCOM_SPI_CTRLA_CPHA_Pos); /* first configuration or reconfiguration after altered device usage */ if (dev(bus)->BAUD.reg != baud || dev(bus)->CTRLA.reg != ctrla) { /* disable the device */ _disable(dev(bus)); dev(bus)->BAUD.reg = baud; dev(bus)->CTRLA.reg = ctrla; /* no synchronization needed here, the enable synchronization below * acts as a write-synchronization for both registers */ } /* finally enable the device */ _enable(dev(bus)); } static inline void _spi_release(spi_t bus) { /* disable the device */ _disable(dev(bus)); } static void _spi_blocking_transfer(spi_t bus, const void *out, void *in, size_t len) { const uint8_t *out_buf = out; uint8_t *in_buf = in; for (size_t i = 0; i < len; i++) { uint8_t tmp = (out_buf) ? out_buf[i] : 0; /* transmit byte on MOSI */ dev(bus)->DATA.reg = tmp; /* wait until byte has been sampled on MISO */ while (dev(bus)->INTFLAG.bit.RXC == 0) {} /* consume the byte */ tmp = dev(bus)->DATA.reg; if (in_buf) { in_buf[i] = tmp; } } } /** @} */ void spi_init(spi_t bus) { /* make sure given bus is good */ assert(bus < SPI_NUMOF); /* initialize the device lock */ mutex_init(&locks[bus]); /* configure pins and their muxes */ spi_init_pins(bus); /* wake up device */ poweron(bus); if (_is_qspi(bus)) { _init_qspi(bus); } else { _init_spi(bus, dev(bus)); } /* put device back to sleep */ poweroff(bus); } void spi_init_pins(spi_t bus) { /* MISO must always have PD/PU, see #5968. This is a ~65uA difference */ if (gpio_is_valid(spi_config[bus].miso_pin)) { gpio_init(spi_config[bus].miso_pin, GPIO_IN_PD); gpio_init_mux(spi_config[bus].miso_pin, spi_config[bus].miso_mux); } gpio_init(spi_config[bus].mosi_pin, GPIO_OUT); gpio_init_mux(spi_config[bus].mosi_pin, spi_config[bus].mosi_mux); gpio_init(spi_config[bus].clk_pin, GPIO_OUT); /* clk_pin will be muxed during acquire / release */ mutex_unlock(&locks[bus]); } void spi_deinit_pins(spi_t bus) { mutex_lock(&locks[bus]); if (gpio_is_valid(spi_config[bus].miso_pin)) { gpio_disable_mux(spi_config[bus].miso_pin); } gpio_disable_mux(spi_config[bus].mosi_pin); } int spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk) { (void)cs; /* get exclusive access to the device */ mutex_lock(&locks[bus]); /* power on the device */ poweron(bus); if (_is_qspi(bus)) { _qspi_acquire(mode, clk); } else { _spi_acquire(bus, mode, clk); } /* mux clk_pin to SPI peripheral */ gpio_init_mux(spi_config[bus].clk_pin, spi_config[bus].clk_mux); return SPI_OK; } void spi_release(spi_t bus) { /* Demux clk_pin back to GPIO_OUT function. Otherwise it will get HIGH-Z * and lead to unexpected current draw by SPI salves. */ gpio_disable_mux(spi_config[bus].clk_pin); if (_is_qspi(bus)) { _qspi_release(); } else { _spi_release(bus); } /* power off the device */ poweroff(bus); /* release access to the device */ mutex_unlock(&locks[bus]); } static void _blocking_transfer(spi_t bus, const void *out, void *in, size_t len) { if (_is_qspi(bus)) { _qspi_blocking_transfer(out, in, len); } else { _spi_blocking_transfer(bus, out, in, len); } } #ifdef MODULE_PERIPH_DMA static void _dma_execute(spi_t bus) { #if defined(CPU_COMMON_SAMD21) pm_block(SAMD21_PM_IDLE_1); #endif dma_start(_dma_state[bus].rx_dma); dma_start(_dma_state[bus].tx_dma); dma_wait(_dma_state[bus].rx_dma); #if defined(CPU_COMMON_SAMD21) pm_unblock(SAMD21_PM_IDLE_1); #endif } static void _dma_transfer(spi_t bus, const uint8_t *out, uint8_t *in, size_t len) { uint8_t tmp = 0; const uint8_t *out_addr = out ? out + len : &tmp; uint8_t *in_addr = in ? in + len : &tmp; dma_prepare_dst(_dma_state[bus].rx_dma, in_addr, len, in ? true : false); dma_prepare_src(_dma_state[bus].tx_dma, out_addr, len, out ? true : false); _dma_execute(bus); } static void _dma_transfer_regs(spi_t bus, uint8_t reg, const uint8_t *out, uint8_t *in, size_t len) { uint8_t tmp; const uint8_t *out_addr = out ? out + len : &tmp; uint8_t *in_addr = in ? in + len : &tmp; dma_prepare_dst(_dma_state[bus].rx_dma, &tmp, 1, false); dma_prepare_src(_dma_state[bus].tx_dma, ®, 1, false); dma_append_dst(_dma_state[bus].rx_dma, &rx_desc[bus], in_addr, len, in ? true : false); dma_append_src(_dma_state[bus].tx_dma, &tx_desc[bus], out_addr, len, out ? true : false); _dma_execute(bus); } void spi_transfer_regs(spi_t bus, spi_cs_t cs, uint8_t reg, const void *out, void *in, size_t len) { if (cs != SPI_CS_UNDEF) { gpio_clear((gpio_t)cs); } if (_use_dma(bus)) { /* The DMA promises not to modify the const out data */ _dma_transfer_regs(bus, reg, out, in, len); } else { _blocking_transfer(bus, ®, NULL, 1); _blocking_transfer(bus, out, in, len); } if (cs != SPI_CS_UNDEF) { gpio_set((gpio_t)cs); } } uint8_t spi_transfer_reg(spi_t bus, spi_cs_t cs, uint8_t reg, uint8_t out) { uint8_t res; spi_transfer_regs(bus, cs, reg, &out, &res, 1); return res; } #endif /* MODULE_PERIPH_DMA */ void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont, const void *out, void *in, size_t len) { assert(out || in); if (cs != SPI_CS_UNDEF) { gpio_clear((gpio_t)cs); } if (_use_dma(bus)) { #ifdef MODULE_PERIPH_DMA /* The DMA promises not to modify the const out data */ _dma_transfer(bus, out, in, len); #endif } else { _blocking_transfer(bus, out, in, len); } if ((!cont) && (cs != SPI_CS_UNDEF)) { gpio_set((gpio_t)cs); } }