The NULL case can not regularly be reached (because regularly
gcoap_register_listener sets thel link_encoder to a default one), but if
it is (eg. because an application unsets its link_encoder to hide a
resource set at runtime), the existing `continue` is a good idea (skip
over this entry) but erroneously created an endless loop by skipping the
advancement step.
Change 'CONFIG_LORA_SF_DEFAULT' to 'SF7' and
'CONFIG_LORA_CR_DEFAULT' to 'LORA_CR_4_5' to
allow shorter air times and make it easier to meet country
specific regulations.
Non-routing 6LNs do not have to join the solicited nodes address, so
probing for a neighbor using that address may be in vain and only
spamming the LLN with unnecessary messages. RFC 6775 basically assumes
this in section 5.2:
> There is no need to join the solicited-node multicast address, since
> nobody multicasts NSs in this type of network.
Using `gnrc_border_router` with `uhcp` is quite noisy.
uhcpc will regularly refresh the prefix and print a bunch of status messages.
Allow the user to tone it down by setting a higher `LOG_LEVEL`.
For this, convert calls to `printf()` and `puts()` to `LOG_xxx()`.
This requires a dummy header for `uhcpd`.
In accordance with RFC 6775, section 5.2 an NCE should be set STALE
when an ARO renews the address registration for the address:
> The routers SHOULD NOT garbage-collect Registered NCEs (see
> Section 3.4), since they need to retain them until the Registration
> Lifetime expires. Similarly, if NUD on the router determines that
> the host is UNREACHABLE (based on the logic in [RFC4861]), the NCE
> SHOULD NOT be deleted but rather retained until the Registration
> Lifetime expires. A renewed ARO should mark the cache entry as
> STALE. Thus, for 6LoWPAN routers, the Neighbor Cache doesn't behave
> like a cache. Instead, it behaves as a registry of all the host
> addresses that are attached to the router.
xtimer.h must not be included, when the xtimer module is not use. Otherwise
compilation on the waspmote-pro with https://github.com/RIOT-OS/RIOT/pull/14799
will not longer work. gnrc_netif_pktq includes xtimer.h and uses xtimer, but
gnrc_netif includes gnrc_netif_pktq.h regardless of whether gnrc_netif_pktq
is used. This makes sure that gnrc_netif_pktq.h is only included when actually
used.
When `nce` is NULL on the duplicate check, the later re-fetching of the
`nce` might result in an actual NCE entry that then contains a
duplicate, so we need to re-check the EUI-64 again as well.
This changes the prefixes of the symbols generated from USEMODULE and
USEPKG variables. The changes are as follow:
KCONFIG_MODULE_ => KCONFIG_USEMODULE_
KCONFIG_PKG_ => KCONFIG_USEPKG_
MODULE_ => USEMODULE_
PKG_ => USEPKG_
Replace direct accesses to sched_active_thread and sched_active_pid with
the helper functions thread_getpid() and thread_get_active(). This serves
two purposes:
1. It makes accidental writes to those variable from outside core less likely.
2. Casting off the volatile qualifier is now well contained to those two
functions
On receiving a DIO message, RPL sets the lifetime for the default
route and the parent timeout event to the value. This leads to short
amounts of time whem the node looses its default route, while it
handles the parent timeout event to probe its parent.
This commit fixes this by adding time the node needs for probing
to the default route lifetime.
These functions are independent from GNRC and can be used by stack-agnistoc
code.
Avoid pulling in a GNRC dependency by moving those two helper functions to
`netif`.
The old function names are kept as `static inline` wrapper functions to avoid
breaking API users.
Coverty scan found this:
> CID 298295 (#1 of 1): Operands don't affect result (CONSTANT_EXPRESSION_RESULT) result_independent_of_operands:
> (ipv6_hdr_get_fl(ipv6_hdr) & 255) >> 8 is 0 regardless of the values of its operands.
Looking at the code, this appears to be a copy & paste error from the previous line.
Coverty scan found this:
> CID 298279 (#1 of 1): Out-of-bounds read (OVERRUN)
> 21. overrun-local: Overrunning array of 16 bytes at byte offset 64 by dereferencing pointer
The original intention was probably to advance the destination pointer by 4 bytes, not
4 * the destination type size.
Using pointer difference already gives us the number of elements of
size of what the pointer is pointing to.
Dividing by size will lead to the wrong (always 0) result.