With the new toolchain version required to fix issue #13133, the compilation of `examples/posix_socket` fails due to a C linkage error in `atomic_base.h`. The reason is that including `drivers/include/mtd.h` in `boards/esp32/board_common.h` inside the `extern C` block finally leads to including `atomic_base.h` inside the `extern C` block which in turn to the C linkage error for the template definitions in this file.
The implementation of `log_module` for ESP32 was changed from functions to a macro-based implementation to be able to use the bunch of macros for colored and tagget log output generation.
ESP32 log output was always tagged with additional information by default. The tag consists the type of the log message, the system time in ms, and the module or function in which the log message is generated. By introducing module `esp_log_tagged`, these additional information are disabled by default and can be enabled by using module `esp_log_tagged`.
Log module of ESP32 supports colored log outputs when module `esp_log_color` is enabled. The generation of colored log outputs is realized by a extending the bunch of macros with an additional letter indicating the type of log message,
Initializing the stdio file descriptors in global reent structure with newlib fake stdio file descriptors led to the problem that newlib stdio functions printf and puts were not working since they can't operate on these fake stdio file descriptors. Therefore, this initialization was removed. Now, the real stdio file descriptors as created automatically by newlib are used. Specific functions `printf`, `puts`, `getchar`and `putchar` are not required any longer and are removed now.
Using a mutex for critical section handling with portENTER_CRITICAL and portEXIT_CRITICAL does not work for RIOT, as this function can also be called in the interrupt context. Therefore, the given mutex is not used. Instead, the basic default FreeRTOS mechanism for critical sections is used by simply disabling interrupts. Since context switches for the ESP32 are also based on interrupts, there is no possibility that another thread will enter the critical section once the interrupts are disabled.
UART devices are now configured using static array in header files instead of static variables in implementation to be able to define UART_NUMOF using the size of the array instead of a variable.
SPI devices are now configured using static array in header files instead of static variables in implementation to be able to define SPI_NUMOF using the size of the array instead of a variable.
I2C devices are now configured using static array in header files instead of static variables in implementation to be able to define I2C_NUMOF using the size of the array instead of a variable.
DAC pins are now configured using static arrays in header files instead of static variables in implementation to be able to define DAC_NUMOF using the size of these arrays instead of a variable.
ADC pins are now configured using static arrays in header files instead of static variables in implementation to be able to define ADC_NUMOF using the size of these arrays instead of a variable.
Functions that are used by ADC and DAC peripherals are moved to a new submodule periph_adc_ctrl. This is necessary to compile separate submodules for ADC and DAC.
The default macros GPIO_PIN and GPIO_UNDEF do not have to be overridden. The GPIO_PIN macro definition was even wrong for 40 GPIOs without splitting into ports, even if that did not lead to erroneous behavior.
Adds a memset function `system_secure_memset` which cannot be optimized out by the compiler. It uses the libsodium approach of weak symbols. Function system_secure_memset calls the standard memset. Calling an empty function declared with weak attribute after the memset call, prevents the compiler to optimize it out. The overhead is only one function call.
Although ESP32 has four SPI controllers, only two of them can be effectively used (HSP and VSPI). The third one (FSPI) is used for external memory such as flash and PSRAM and can not be used for peripherals. FSPI is therefore removed from the API. In addition, the SPI0_DEV and SPI1_DEV configuration parameters are renamed SPI0_CTRL and SPI1_CTRL to better describe what they define and to avoid confusion with SPI_DEV (0) and SPI_DEV (1).
cpu/esp32/include/periph_cpu.h overrides the default definition of adc_res_t from periph/adc with a definition which contains only four resolution, two new resolutions and two resolutions defined by the default definition of adc_res_t. This gives compilation errors if an application uses other resolutions. According to the documentation, adc_sample should return -1 if the resolution is not supported. All other CPUs override adc_res_t either to add new resolutions or to mark resolutions as unsupported. But they all allow to use them at the interface. Therefore, esp32 overrides now the definition of adc_res_t with all resolutions that are defined by the default definition of adc_res_t and new platform specific resolutions. It returns -1 if a resolution is used in adc_sample that is not supported.
Some ESP32 boards (like my SparkFun ESP32 Thing) have a main clock
crystal that runs at 26MHz, not 40MHz. RIOT appears to assume 40MHz.
The mismatch causes the UART to not sync properly, resulting in
garbage written to the terminal instead of log output.
I’ve added:
* A new board configuration constant ESP32_XTAL_FREQ that defaults
to 40, but can be overridden by a board def or at build time to
force a specific value (i.e. 26).
* Some code spliced into system_clk_init() to check this constant and
call rtc_clk_init() to set the correct frequency.
* A copy of the rtf_clk_init() function from the ESP-IDF sources.
Fixes#10272