What happens with events that occured after `gpio_irq_disable()` is
currently not defined.
If they are not cleared, they will generate an interrupt on `gpio_irq_enable()`.
This does not seem like the intended behavior, so make the documentation more
explicit.
mock_rtt relies on setting mock values for RTT_MAX_VALUE and
RTT_FREQUENCY. Platforms with a rtt will already define these
values which leads to mock_rtt working with different values than
rtt_rtc.
This commit changes the ifdef logic so that when using mock_rtt
RTT_MAX_VALUE and RTT_FREQUENCY are redefined.
This adds the feature `periph_wdt_warning_period` that indicates that a
platform WDT driver implementation supports a configurable
CONFIG_WDT_WARNING_PERIOD.
It is often desireable to re-configure the pins of a bus back to GPIO mode,
either to save power when an external peripheral is turned off and current
would leak, or because a device may need a non-standard in-band signal to
be generated on the bus lines.
To serve those use cases, this patch introduces four new functions to the
I2C API:
- `i2c_init_pins()` equivalent to spi_init_pins(), restores I2C pin configuration
- `i2c_deinit_pins()` to switch the configuration of the I2C pins back to GPIO
mode and block access to the bus.
- `i2c_pin_sda()` to get the data pin for a given bus
- `i2c_pin_scl()` to get the clock pin for a given bus
Since it's unreasonable to expect having implementations for all platforms
already, those functions are only availiable when the periph_i2c_reconfigure
feature is availiable.
Applications should use FEATURES_REQUIRED += periph_i2c_reconfigure or
FEATURES_OPTIONAL if they want to make use of those functions.
Change documentation on return codes in periph/timer API to
return 0 on success and (-1) on error by default.
For timer_init this was already the case, but for timer_set,
timer_set_absolute, and timer_clear this is now changed
from 1 to 0 for success, while error remains (-1).
i2c_release() should not have a return value, as:
- There is no reasonable error handling possible by the caller, so there is no
value in indicating success/failure via the return value to the caller
- There is no legitimate reason to fail *unless* an invalid I2C bus was released
or an I2C bus that was not previously acquired was released
--> This would indicate a bug in the code and should be tackled by an
assert()