The interval load value was only set to 0xffff regardless of the counter
mode used which mad the 32bit timer apparently stop after 0xffff (it
would never reach values >0xffff).
When a GPTM is configured to one of the 32-bit modes, TAILR appears as a
32-bit register (the upper 16-bits correspond to the contents of the
GPTM Timer B Interval Load (TBILR) register). In a 16-bit mode, the
upper 16 bits of this register read as 0s and have no effect on the
state of TBILR.
Thsi commit set the correct value for TAILR depending on the configured
timer mode.
With the new version some OpenWSN modules are optional:
- openwsn_cjoin (and therefore opewnsn_coap)
- openwsn_6lo_fragmentation
- openwsn_icmpv6echo
- openwsn_crypto
- openwsn_udp (optional but kept as default)
New optional modules have been added:
- openwsn_iee802154e_security (link layer security)
- openwsn_adaptive_msf (MSF dynamic slot allocation)
Openvisualizer needs to be updated to be compatible with the new
version.
Coverty scan found this:
> CID 298295 (#1 of 1): Operands don't affect result (CONSTANT_EXPRESSION_RESULT) result_independent_of_operands:
> (ipv6_hdr_get_fl(ipv6_hdr) & 255) >> 8 is 0 regardless of the values of its operands.
Looking at the code, this appears to be a copy & paste error from the previous line.
Coverty scan found this:
> CID 298279 (#1 of 1): Out-of-bounds read (OVERRUN)
> 21. overrun-local: Overrunning array of 16 bytes at byte offset 64 by dereferencing pointer
The original intention was probably to advance the destination pointer by 4 bytes, not
4 * the destination type size.
Seems like the Interrupt flag for a Capture/Compare channel gets set when
- the CC-value is reached
- the timer resets before the CC value is reached.
We only want the first event and ignore the second one. Unfortunately I did
not find a way to disable the second event type, so it is filtered in software.
That is we need to
- ignore the CC-interrupts when the COUNT register register is reset
- ignore the CC-interrupts > TOP value/ARR (auto-reload register)
> A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
> The bit-band regions occupy the lowest 1 MB of the SRAM and peripheral memory regions. A
https://www.mouser.com/datasheet/2/405/lm4f120h5qr-124014.pdf
> Bit-banding is supported in order to reduce the execution time for
> read-modify-write (RMW) operations to memory.
> With bit-banding, certain regions in the memory map
> (SRAM and peripheral space) can use address aliases to access
> individual bits in one atomic operation.
https://www.ti.com/lit/ug/swcu117i/swcu117i.pdf
> Bit-banding is supported in order to reduce the execution time for
> read-modify-write (RMW) operations to memory.
> With bit-banding, certain regions in the memory map
> (SRAM and peripheral space) can use address aliases to access
> individual bits in one atomic operation.
https://www.ti.com/lit/ug/swcu185d/swcu185d.pdf