Make sure to de-init the SPI bus before using the pins as GPIO.
Once all archs implement periph_spi_reconfigure, we can drop mosi,
miso and clk pins from the `card->params` and just use the bus
getter functions.
The EDBG debugger on the `samr21-xpro` contains a unique 64 bit address
intended to be used as a MAC address for the internal radio.
This adds a driver to read that EUI-64 from the debugger, it should match
with the MAC address printed on the label on the board.
sdcard_spi is the only driver in auto_init_storage and was previously
pulled in by fatsfs (because it's used on SD cards)
It does however make much more sense if the SD card driver pulls that in
so other file systems can be used on SD card too.
MRF24J40 supports a proprietary turbo mode with a data rate of 625 kbit/s
instead of the standard 250 kbit/s.
It can be enabled through
ifconfig 7 set high_rate 1
AT86RF2xx supports high data rates in O-QPSK mode.
This is a proprietary feature, so data rates > 0 are only supported by
other AT86RF2xx devices.
high_rate 0: 250 kbit/s (IEEE mode)
high_rate 1: 500 kbit/s
high_rate 2: 1000 kbit/s (compatible with at86rf215)
high_rate 3: 2000 kbit/s
drivers/at25xxx: add mtd_wrapper as submodule
tests: add mtd_at25xxx test module for mtd wrapper
drivers/Makefile.dep: add at25xxx dep for mtd_at25xxx module
This adds a driver for the ST M95xxx series SPI EEPROMs.
The driver has been tested with the M95M01 EEPROM, but should
work with other chips from that family.
SPI-EEPROMs from other vendors from the families AT25xxx, 25AAxxx,
25LCxxx, CAT25xxx & BR25Sxxx should also in the same way.
This is the radio found in NXP Kinetis KW41Z, KW21Z. Only 802.15.4 mode
is implemented (KW41Z also supports BLE on the same transceiver).
The driver uses vendor supplied initialization code for the low level
XCVR hardware, these files were imported from KSDK 2.2.0 (framework_5.3.5)
This adds a driver for the SPI based AT86RF215 transceiver.
The chip supports the IEEE Std 802.15.4-2015 and IEEE Std 802.15.4g-2012 standard.
This driver supports two versions of the chip:
- AT86RF215: dual sub-GHz & 2.4 GHz radio & baseband
- AT86RF215M: sub-GHz radio & baseband only
Both radios support the following PHY modes:
- MR-FSK
- MR-OFDM
- MR-O-QPKS
- O-QPSK (legacy)
The driver currently only implements support for legacy O-QPSK.
To use both interfaces, add
GNRC_NETIF_NUMOF := 2
to your Makefile.
The transceiver is able to send frames of up to 2047 bytes according to
IEEE 802.15.4g-2012 when operating in non-legacy mode.
Known issues:
- [ ] dBm setting values are bogus
- [ ] Channel spacing for sub-GHz MR-O-QPSK might be wrong
- [ ] TX/RX stress test will lock up the driver on openmote-b