We cannot use the D0/D1 UART if it is also used for STDIO. However,
the logic did not take into account whether `stdio_uart` was used at
all. This fixes the issue.
Calling `uart_poweroff()` when done with the UART test allows sharing
the underlying hardware e.g. to provide other peripheral interfaces.
One example of this would be the SERCOM3 on the Adafruit Metro M4
Express that is used to provide UART on D1/D0 and SPI on D11/D12/D13.
The GPIO IRQ tests had a side-effect that IRQs remained configured after
the test case was complete. This caused stray IRQs to trigger on
SAM0 MCUs and they consequently (and incorrectly) failed the test.
Calling `timer_init()` with unsupported frequencies on some MCUs just
selects the closest possible frequency. But e.g. on SAM0, using an
unsupported frequency will cause `timer_init()` to fail; which probably
is the better option.
However, a failing calling to `timer_init()` results in a test failure.
This is now worked around by using timer_query_freq() to select a
suitable timer frequency that is supported.
- Detect when the same timer is used by `ztimer` (pulled in as
dependency for a peripheral driver, e.g. `periph_adc` on STM32F3) and
the test application
- Try to provide a better default (e.g. `TIMER_DEV(1)` when
`ztimer_periph_timer` is in use, `TIMER_DEV(0)` otherwise)
The R-2R resistor ladder dac --> ADC test was disabled due to a bug in
the v0.1 version of the shield. Since this has been fixed in v0.2 and
v0.3 of the shield, it can be re-enabled.
The comment regarding the high accuracy of the resistor is dropped, as
v0.3 has been ordered with cost efficient resistors rather than with
accurate ones. As a result, the tolerance for error has been increased
to 10%. This quite a bit more lax than I have hoped for, but false
positives would be something to avoid.
- fix a copy-paste error (`TIMER_FREQ_UART_TEST` was used in the SPI
test, but that should be `TIMER_FREQ_SPI_TEST`)
- use 400 kHz as slow SPI frequency, as faster STM32 MCUs just cannot
divide the APB clock down to 100 kHz
- when detailed output is enabled, print the SPI clock in addition to
the SPI mode to ease figuring out what went wrong
- only have one `FAILURE` message for a too fast byte transfer per
check, rather than per transmitted byte, to reduce the noise
- work around a bug of `periph_timer` on STM32 by reducing the clock
speed of the timer for the SPI test
This test application makes use of the RIOT Peripheral Selftest Shield,
which connects e.g. PWM to ADC or SPI MOSI to SPI MISO, UART TXD to RXD,
etc. This provides quick and fully automated self testing capabilities.
Please note that the simplicity and ease of use of the hardware comes
with a prices: There are whole classes of issues that cannot be detected
automatically. This test cannot replace other testing approaches
(such as manual testing or PHiLIP on the HiL), but only complement them.