If we switch the interface in gnrc_ipv6_nib_get_next_hop_l2addr()
we must also re-get the nib entry from the 'proper' interface.
Otherwise we will always find the host unreachable on the 'wrong'
interface.
Consider the following configuration:
nib prefix
2001:16b8:4569:88fc::/62 dev #7 expires 7081 sec deprecates 3481 sec
2001:16b8:4569:88fe::/63 dev #6
If `_on_link()` stops at the first match, a packet received from #7 with a
destination in the downstream subnet in #6 would always be sent back via #7
if this happens to be the first entry in the list.
Instead, consider all prefixes and return the one that is the closest match.
When two threads use `gnrc_ipv6_nib_get_next_hop_l2addr()` to determine
a next hop (e.g. when there is both an IPv6 sender and a 6LoWPAN
fragment forwarder), a race condition may happen, where one thread
acquires the NIB and the other acquires the network interface resulting
in a deadlock. By releasing the NIB (if acquired) before trying to
acquire the network interface and re-acquiring the NIB after the network
interface is acquired, this is fixed.
According to the documentation of `gnrc_ipv6_nib_get_next_hop_l2addr()`
`pkt` may be `NULL`. However, whenever that function sends an error
message (the methods for that require `orig_pkt` not to be NULL) `pkt`
is not checked, which may lead to failed assertions.
Currently the constructed NA for a delayed NA case is neither used nor
released nor does it get an IPv6 header to be used properly. This fixes
that case.
When a new queue entry is tried to be allocated for a neighbor who's
address is currently tried to be resolved there was no error case
before. The packet that was tried to be put in the queue was thus not
released and stayed in the packet buffer for ever.
When having a non-6LN interface and a 6LN interface (e.g. on a border
router) the assertion can hit when a Router Advertisement is received.
This makes the check an `if` statement rather than an assertion, to
account for that case.
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Without this the first packet to a new link-local address will not be
delivered in non-6Lo environments, since the interface is not provided.
With this change, if an internet was provided to the address resolver it
will be stored within an allocated `gnrc_netif_hdr_t`.
At this point [IPv6 already striped](netif strip) the packet of its
netif header, so there is no risk that there will be to, in case it was
provided and the `netif` came from its existence.
Our `gnrc_minimal` example configures the link-local address from the
IEEE 802.15.4 short address since it does not include 6Lo-ND.
This causes the application to be incompatible with our other GNRC
application that do include 6Lo-ND, since it [assumes][1] the link-local
address to be based on the EUI-64 for address resolution.
This enforces long addresses (aka EUI-64) for all IEEE 802.15.4 devices
when IPv6 is compiled in so `gnrc_minimal` is compatible again to the
rest.
Fixes#9910
[1]: https://tools.ietf.org/html/rfc6775#section-5.2
Linux doesn't have ARO support at the moment so this is a workaround to
try to speak 6Lo-ND while still being able to do DAD with a border
router that doesn't.