In preparation for the parallel interface support the following changes were made:
1. The code for basic communication (acquire/release SPI device, SPI transfers), which were always implemented identically in the individual display drivers again and again, have been moved to the LCD driver as low-level functions and are now used by the display drivers. These low level function allow
- code deduplication on one hand and
- to define a more abstract communication interface on the other hand that can then be extended by parallel communication
2. Identical GPIO initialization has also been moved from display drivers to the LCD driver.
- Rename all `arduino_pinmap.h` to `arduino_iomap.h`
- An empty `arduino_pinmap.h` that just includes `arduino_iomap.h`
is provided for backward compatibility
- Move all info from `arduino_board.h` into the new file as trivial
macros, so that they can also be used outside of sketches
- The new name reflects the fact not just pin mappings, but also
other I/O features such as PWMs are mapped
- Drop all `arduino_board.h`
- `arduino_board.h` and `arduino_iomap.h` now provide the exact
same information, just in a different format
- a generic `arduino_board.h` is provided instead that just
uses the info in `arduinio_iomap.h` and provides them in the
format the code in `sys/arduino` expects it
- Add fine grained features to indicate for mappings
- availability of mappings for analog pins, DAC pins, PWM pins,
UART devices, SPI/I2C buses to the corresponding RIOT
identification can now be expressed:
- `arduino_pins`: `ARDUINO_PIN_0` etc. are available
- `arduino_analog`: `ARDUINO_A0` etc. are available
- `arduino_pwm`: `ARDUINO_PIN_13_PWM_DEV` etc. are available
- `arduino_dac`: `ARDUINO_DAC0` etc. are available
- `arduino_uart`: `ARDUINO_UART_D0D1` or similar are available
- `arduino_spi`: `ARDUINO_SPI_ISP` or similar are available
- `arduino_i2c`: `ARDUINO_I2C_UNO` or similar are available
- mechanical/electrical compatibility with specific form factors
can now be expressed as features:
- `aruino_shield_nano`: Arduino NANO compatible headers
- `aruino_shield_uno`: Arduino UNO compatible headers
- `aruino_shield_mega`: Arduino MEGA compatible headers
- `aruino_shield_isp`: ISP header is available
This provides the groundwork to implement shield support as modules
that can rely on the I/O mappings, rather than having to provide a
configuration per board.
19718: drivers/dht: busy wait reimplementation r=benpicco a=hugueslarrive
### Contribution description
In PR #19674, I also provided quick and dirty fixes to restore functionality on esp8266 and enable operation on AVR. While reviewing PR #18591, it became apparent to me that this driver needed a refresh, particularly its migration to ztimer.
The cause of the malfunction on esp8266 was that since the default switch to ztimer as the backend for xtimer, XTIMER_BACKOFF was no longer taken into account. Therefore, the correction I provided in PR #19674 simply made explicit what was previously done implicitly with xtimer and now needs to be done explicitly with ztimer (spinning instead of sleeping).
Moreover, it was unnecessarily complex to measure the pulse duration in a busy-wait implementation, which required 2 calls to ztimer_now() and 32-bit operations expensive on 8-bit architecture. Instead, it is sufficient to read the state of the bus at the threshold moment.
Finally, in practice, it is possible to reduce the read interval (down to less than 0.5s for DHT22) by "harassing" the DHT with start signals until it responds.
This re-implementation brings the following improvements:
- Many backports from `@maribu's` IRQ based implementation (#18591):
- Use of ztimer
- Use of errno.h
- Use of a dht_data structure to pass arguments, to facilitate integration
- Adaptation of the bit parsing technique to parse bits into the data array
- Reintroduction of DHT11/DHT22 differentiation.
- Separation of `dht_read()` steps into functions for better readability and the ability to share certain functions among different implementations
- Sensor presence check in `dht_init()`
- ~~Automatic adjustment to a minimum data hold time~~
- Default input mode changed to open drain (a pull-up resistor should be placed close to the output if necessary but not close to the input)
- AVR support without platform-specific handling by avoiding ztimer_spin() and using the overflow of an 8-bit variable as a pre-timeout to minimize time-consuming ztimer_now() calls
Regarding the changes in the start signal sequence and the removal of the `_reset()` function:
![nano_dht_read_2](https://github.com/RIOT-OS/RIOT/assets/67432403/95966813-2b5f-4a0f-a388-8ac630526ab2)
~~In the previous implementation, there was an unnecessary spike at the beginning of the signal sequence, corresponding to START_HIGH_TIME. This spike has been removed in the re-implementation, as it is unnecessary. Instead, the MCU now simply pulls the signal low for START_LOW_TIME and then releases the bus, which is sufficient for initiating communication with the DHT sensor.~~ Actually, it is necessary to raise the bus level; otherwise, the _wait_for_level() called immediately after to check the response of the DHT may read the port before the signal level is raised, resulting in a false positive.
Additionally, the previous implementation had an issue where the MCU switched back to output mode and went high immediately after reading the 40 bits of data. However, the DHT sensor was still transmitting 2 or 3 additional bytes of '0' at that point, causing a conflict. This issue has been resolved in the re-implementation:
![nano_dht_read_optimized](https://github.com/RIOT-OS/RIOT/assets/67432403/ff124839-5ec5-4df3-bab7-5348d8160a25)
~~Regarding the optimization for AVR, I have performed measurements of `_wait_for_level()` until timeout (85 loops):~~
~~- on esp8266-esp-12x: 264 µs, which is 3.11 µs per loop~~
~~- on nucleo-f303k8: 319 µs, which is 3.75 µs per loop~~
~~- on arduino-nano: 3608 µs, which is 42.45 µs per loop~~
~~Duration measurements on the Arduino Nano:~~
19737: dist/tools/openocd: start debug-server in background and wait r=benpicco a=fabian18
19746: buildsystem: Always expose CPU_RAM_BASE & SIZE flags r=benpicco a=Teufelchen1
### Contribution description
Hello 🐧
This moves the definition of `CPU_RAM_BASE/SIZE` from being only available in certain situation to be always available.
Reason for change is to simplify common code in the cpu folder.
In cooperation with `@benpicco`
### Testing procedure
Passing CI
### Issues/PRs references
First usage will be in the PMP driver. Although there is more code in RIOT that could be refactored to use these defines instead of hacks / hardcoded values.
Co-authored-by: Hugues Larrive <hlarrive@pm.me>
Co-authored-by: Fabian Hüßler <fabian.huessler@ml-pa.com>
Co-authored-by: Teufelchen1 <bennet.blischke@outlook.com>
- many backports from @maribu's IRQ based implementation (#18591)
- use of ztimer and errno.h
- separation of dht_read() steps into functions for better readability
- reintroduction of DHT11/DHT22 differentiation
- sensor presence checking in dht_init()
- default input mode changed to open drain
- AVR support without platform-specific handling by avoiding
ztimer_spin() and using the overflow of an 8-bit variable as a
pre-timeout to minimize time-consuming ztimer_now() calls
- add a new DHT11_2022 type for 0.01 °C resolution devices
- data caching removed
19703: cpu/sam0_eth: interrupt based link detection/auto-negotiation r=benpicco a=benpicco
19724: dist/tools/openocd: add OPENOCD_SERVER_ADDRESS variable r=benpicco a=fabian18
19735: nrf5x_common: Clear I2C periph shorts r=benpicco a=bergzand
### Contribution description
The I2C peripheral's shortcuts are used with the read and write register to automatically stop the I2C transaction or to continue with the next stage.
With simple I2C read and write bytes these shorts are not used, but are also not cleared by the function in all cases, causing it to use the shortcut configuration set by a previous function call. This patch ensures that the shorts are always set by the read and write functions
### Testing procedure
Should be possible to spot with a logic analyzer and the I2C periph test. Maybe the HIL test can also detect it :)
### Issues/PRs references
None
Co-authored-by: Benjamin Valentin <benjamin.valentin@ml-pa.com>
Co-authored-by: Fabian Hüßler <fabian.huessler@ml-pa.com>
Co-authored-by: Koen Zandberg <koen@bergzand.net>
19695: drivers/hih6130: avoid using floats r=maribu a=maribu
### Contribution description
- avoid using floating point arithmetic
- use ztimer instead of xtimer
- use fmt to print fixed point numbers in the test app
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
19610: drivers/periph/rtc: improve doc on rtc_set_alarm r=maribu a=maribu
### Contribution description
- point out behavior on denormalized time stamps
- use errno codes to indicate errors (and adapt the few instances of actual error handling to use them)
19670: cpu/stm32: stm32f4 BRR from BSRR r=maribu a=kfessel
### Contribution description
sometimes one wants to save one instruction :)
just write the bits we need to write.
### Testing procedure
tests/periph/gpio_ll tests this
### Issues/PRs references
`@maribu` might know some reference
maybe #19407
19678: gnrc_sixlowpan_iphc: fix NULL pointer dereference r=maribu a=miri64
19679: gnrc_sixlowpan_frag_sfr: fix ARQ scheduler race-condition r=maribu a=miri64
19680: gnrc_sixlowpan_frag_rb: fix OOB write in _rbuf_add r=maribu a=miri64
19681: sys/xtimer: improve documentation r=maribu a=maribu
### Contribution description
- Add a warning that xtimer is deprecated, so that new code hopefully starts using ztimer
- Add a hint that `ztimer_xtimer_compat` can be used even after `xtimer` is gone
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Co-authored-by: Karl Fessel <karl.fessel@ovgu.de>
Co-authored-by: Martine Lenders <m.lenders@fu-berlin.de>
- point out behavior on denormalized time stamps
- use errno codes to indicate errors (and adapt the few instances of
actual error handling to use them)
The `mtd_default` module defines `MTD_NUMOF` if not existing based on the `MTD_*` defines which are usually set to the corresponding MTD device pointer variables `mtd*`. However, these MTD device pointer variables are not always made known by external variable declarations. An example are SD Card Interfaces which are defined via the `mtd_sdcard_default` module. As a consequence, an application that uses `mtd_default` has still to be modified. Therefore, `mtd_default` also declares up to 6 `mtd*` MTD device pointer variables.
19523: boards/iotlab-m3: enable l3g4200d_ng r=benpicco a=benpicco
19527: drivers/sdcard_spi: small cleanup r=benpicco a=gschorcht
### Contribution description
This PR provides a small cleanup:
- the copy of `sdcard_spi_params_t` is removed (commit bfc2a51f70)
- the documentation was changed to fit the 100 characters per line. (commit 36f0162b34)
It is not necessary to hold a complete copy `sdcard_spi_params_t` in the device descriptor. Constant parameters can be used directly from ROM instead. This saves 24 bytes of RAM.
### Testing procedure
Use any board with SD Card SPI interface. The driver test should still work, for example:
```
BOARD=esp32-wrover-kit make -j8 -C tests/driver_sdcard_spi flash term
```
```
main(): This is RIOT! (Version: 2023.07-devel-176-g7213c-drivers/sdcard_spi_cleanup)
SD-card spi driver test application
insert SD-card and use 'init' command to set card to spi mode
WARNING: using 'write' or 'copy' commands WILL overwrite data on your sd-card and
almost for sure corrupt existing filesystems, partitions and contained data!
> init
Initializing SD-card at SPI_0...
[OK]
>
```
### Issues/PRs references
19530: sys/xtimer: add missing "modules.h" include to `xtimer.h` r=benpicco a=kaspar030
19532: tests/unittests: tests-core-mbox: add missing `container.h` include r=benpicco a=kaspar030
19533: core: move macros/math.h to core/lib/include/macros r=benpicco a=kaspar030
19535: nanocoap_sock: defuse nanocoap_sock_get() API footgun r=benpicco a=benpicco
Co-authored-by: Benjamin Valentin <benjamin.valentin@ml-pa.com>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Kaspar Schleiser <kaspar@schleiser.de>
It is not necessary to hold a complete copy `sdcard_spi_params_t` in the device descriptor. Constant parameters can be used directly from ROM instead. This saves 24 bytes of RAM.
The address in the USB device can be set either directly after the SETUP stage on receipt of the `SET ADDRESS Request` or after the associated status stage. When the USB device address has to be set depends on the hardware. If `USBDEV_SET_ADDR_AFTER_STATUS` has the value 1 (default), the address is only set in the USB device after the status stage. Overwrite it with 0 in `periph_cpu.h` to set the address already directly after the SETUP stage.
17086: usbdev: Add dedicated stall functions r=benpicco a=bergzand
### Contribution description
This PR adds dedicated stall functions for usbdev peripherals. Two
functions are added. The first function (usbdev_ep_stall) to enable and
disable the stall condition on generic endpoints. The second function is
a dedicated function to set the stall condition on endpoint zero in both
directions. This status can only be set and should automatically be
cleared by the usbdev implementation (or hardware) after a new setup
request is received from the host.
### Testing procedure
- examples/usbus_minimal should still enumerate correctly on the host side.
- #17085 can be used to demonstrate the ep0_stall function with the `tests/usbus_cdc_acm_stdio/` test
### Issues/PRs references
None
Co-authored-by: Koen Zandberg <koen@bergzand.net>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
This commit adds dedicated stall functions for usbdev peripherals. Two
functions are added. The first function (usbdev_ep_stall) to enable and
disable the stall condition on generic endpoints. The second function is
a dedicated function to set the stall condition on endpoint zero in both
directions. This status can only be set and should automatically be
cleared by the usbdev implementation (or hardware) after a new setup
request is received from the host.
18392: drivers/servo: reimplement with high level interface r=benpicco a=maribu
### Contribution description
The previous servo driver didn't provide any benefit over using PWM directly, as users controlled the servo in terms of PWM duty cycles. This changes the interface to provide a high level interface that abstracts the gory PWM details.
In addition, a SAUL layer and auto-initialization is provided.
### Testing procedure
The test application provides access to the servo driver via the `saul` shell command.
```
> saul
2022-08-02 22:12:31,826 # saul
2022-08-02 22:12:31,827 # ID Class Name
2022-08-02 22:12:31,830 # #0 ACT_SWITCH LD1(green)
2022-08-02 22:12:31,832 # #1 ACT_SWITCH LD2(blue)
2022-08-02 22:12:31,834 # #2 ACT_SWITCH LD3(red)
2022-08-02 22:12:31,837 # #3 SENSE_BTN B1(User button)
2022-08-02 22:12:31,838 # #4 ACT_SERVO servo
> saul write 4 0
2022-08-02 22:12:41,443 # saul write 4 0
2022-08-02 22:12:41,445 # Writing to device #4 - servo
2022-08-02 22:12:41,447 # Data: 0
2022-08-02 22:12:41,450 # [servo] setting 0 to 2949 (0 / 255)
2022-08-02 22:12:41,453 # data successfully written to device #4
> saul write 4 256
2022-08-02 22:12:45,343 # saul write 4 256
2022-08-02 22:12:45,346 # Writing to device #4 - servo
2022-08-02 22:12:45,347 # Data: 256
2022-08-02 22:12:45,351 # [servo] setting 0 to 6865 (255 / 255)
2022-08-02 22:12:45,354 # data successfully written to device #4
```
Each write resulted in the MG90S servo that I connected to move to the corresponding position.
### Issues/PRs references
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
The previous servo driver didn't provide any benefit over using PWM
directly, as users controlled the servo in terms of PWM duty cycles.
This changes the interface to provide a high level interface that
abstracts the gory PWM details.
In addition, a SAUL layer and auto-initialization is provided.
Co-authored-by: benpicco <benpicco@googlemail.com>
19256: pkg/tinyusb: add GD32VF103 support r=gschorcht a=gschorcht
### Contribution description
This PR provides the tinyUSB support for GD32VF103 and enables the `tinyusb_device` feature as well as `stdio_tinyusb_cdc_acm` for GD32VF103 boards.
### Testing procedure
```
BOARD=sipeeed-longan-nano make -C tests/shell flash term
```
should work
### Issues/PRs references
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
19258: drivers/mtd_flashpage: implement pagewise API, don't use raw addresses r=benpicco a=benpicco
Co-authored-by: Benjamin Valentin <benjamin.valentin@ml-pa.com>
Co-authored-by: Benjamin Valentin <benjamin.valentin@bht-berlin.de>
Co-authored-by: Benjamin Valentin <benpicco@beuth-hochschule.de>
19270: drivers/at24cxxx: implement _mtd_at24cxxx_read_page r=benpicco a=HendrikVE
### Contribution description
The function `read_page` was missing which lead to (from a user perspective) undefined behavior on the MTD layer.
### Testing procedure
Any application using MTD in conjunction with a board with an at24cxxx.
19271: core/xfa: disable asan on llvm r=benpicco a=Teufelchen1
### Contribution description
Hi! 🦎
When using llvm and address sanitation, the XFA trip the sanitizer.
This PR attempts to fix this by adding the `no_sanitize` attribute to the XFA macros. Sadly, this attribute is not known by gnu, a guard is hence needed. I'm open for alternatives as I dislike this solution but it is the best I could come up with.
### Testing procedure
Before this patch:
Go to `examples/gnrc_minimal` and run `TOOLCHAIN=llvm make all-asan` and then `make term`.
You should see an error similar to this:
```
==3374719==ERROR: AddressSanitizer: global-buffer-overflow on address 0x080774e0 at pc 0x0804af5e bp 0x0808eb88 sp 0x0808eb78
READ of size 4 at 0x080774e0 thread T0
#0 0x804af5d in _auto_init_module /RIOT/sys/auto_init/auto_init.c:40
#1 0x804af5d in auto_init /RIOT/sys/auto_init/auto_init.c:339
#2 0x804b375 in main_trampoline /RIOT/core/lib/init.c:56
#3 0xf76bc7b8 in makecontext (/lib32/libc.so.6+0x4a7b8)
...
```
After applying this PR, the example can be build and run with llvm or gcc, with or without asan.
Co-authored-by: Hendrik van Essen <hendrik.vanessen@ml-pa.com>
Co-authored-by: Teufelchen1 <bennet.blischke@haw-hamburg.de>