The `addr` parameter of the NIB's `_handle_dad()` function can come
from anywhere (e.g. in the fallback to classic SLAAC the destination
address of the IP header is used), so putting that pointer in a timer
is not a good idea. Instead we use the version of the address that is
stored within the interface.
If the interface's link-layer doesn't use link-layer addresses it
obviously doesn't make sense to auto-configure an IPv6 address from it.
Moreover, I think the address `fe80::` is actual illegal, but I
couldn't find any references for it.
According to the documentation of `gnrc_ipv6_nib_get_next_hop_l2addr()`
`pkt` may be `NULL`. However, whenever that function sends an error
message (the methods for that require `orig_pkt` not to be NULL) `pkt`
is not checked, which may lead to failed assertions.
Currently the constructed NA for a delayed NA case is neither used nor
released nor does it get an IPv6 header to be used properly. This fixes
that case.
When working on the previous commit I was unsure if a
garbage-collectible entry should remain in the list, so I added this
comment so I don't have to wonder about this in the future ;-).
The `_next_removable` list manages the cache-out of the neighbor cache.
However, when a neighbor cache entry is removed, it is not removed
from that list, which may lead to a segmentation fault when that list is
accessed, since the whole entry (including its list pointer) is zeroed
after removal.
With this change the entry is removed from that list accordingly before
the zeroing happens.
When a new queue entry is tried to be allocated for a neighbor who's
address is currently tried to be resolved there was no error case
before. The packet that was tried to be put in the queue was thus not
released and stayed in the packet buffer for ever.
The function to infer the link-layer address length from the length of
a S/TLLAO is very dependent on the IPv6 over X specification and thus
should be grouped with the other IP over X functions.
When having a non-6LN interface and a 6LN interface (e.g. on a border
router) the assertion can hit when a Router Advertisement is received.
This makes the check an `if` statement rather than an assertion, to
account for that case.
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Without this the first packet to a new link-local address will not be
delivered in non-6Lo environments, since the interface is not provided.
With this change, if an internet was provided to the address resolver it
will be stored within an allocated `gnrc_netif_hdr_t`.
At this point [IPv6 already striped](netif strip) the packet of its
netif header, so there is no risk that there will be to, in case it was
provided and the `netif` came from its existence.
Our `gnrc_minimal` example configures the link-local address from the
IEEE 802.15.4 short address since it does not include 6Lo-ND.
This causes the application to be incompatible with our other GNRC
application that do include 6Lo-ND, since it [assumes][1] the link-local
address to be based on the EUI-64 for address resolution.
This enforces long addresses (aka EUI-64) for all IEEE 802.15.4 devices
when IPv6 is compiled in so `gnrc_minimal` is compatible again to the
rest.
Fixes#9910
[1]: https://tools.ietf.org/html/rfc6775#section-5.2
Linux doesn't have ARO support at the moment so this is a workaround to
try to speak 6Lo-ND while still being able to do DAD with a border
router that doesn't.
Parts of [RFC4862] were already implemented when NDP via the NIB was
first implemented. This change just includes the DAD portion of
[RFC4862]. This should be enough to make RIOT fully RFC4862 compliant.
[RFC4862]: https://tools.ietf.org/html/rfc4862
With the previous fix, we only have to register addresses that are not
VALID yet on reception of router advertisements. This removes the need
for the hacky `GNRC_NETIF_FLAGS_6LO_ADDRS_REG` flag that was only
introduced to prevent unnecessary re-registration.