Currently, the tcp and udp implementations are bound to each other in a
module called *destiny*. Thus, when using only one of them then the
other one gets also compiled into the binary and initialized,
which results in unnecessary RAM usage and workload for the CPU.
The approach in this PR defines a common module named *socket_base*,
which contains functions used by the posix layer. Compiled by it's own,
those functions return negative error codes, to symbolize upper layers
that they are not supported. When also including the modules *udp* or
*tcp* respectively, functions from *socket_base* get overwritten with the
correct functionality.
Defining *udp* or *tcp* in a Makefile also includes *socket_base*.
Defining *pnet* in a Makefile also includes *socket_base*.
Instead of using differing integer types use kernel_pid_t for process
identifier. This type is introduced in a new header file to avoid
circular dependencies.
This PR converts tabs to white spaces.
The statement I used for the conversion:
```find . -name "*.[ch]" -exec zsh -c 'expand -t 4 "$0" > /tmp/e && mv /tmp/e "$0"' {} \;```
Afterwards, I had a quick overview of the converted files to prevent odd indentation.
In the current implementation the data offset is coded into an uint8_t.
Of this uint8_t only 3 bits apply for the data offset.
The remaining bits represent reserved flags for future use.
However, a proper bit masking is forgotten in order
to obtain the data offset part of this uint8_t.
Therefore, defining this uint8_t as a bit field allows a more convenient
method of access.
IEEE 802.15.4 has two addressing modes: 16-bit short and the device's
EUI-64. Currently RIOT supports only sending of packets with 16-bit
short addresses via the transceiver interface. This patch allows at
least for the radio chips that support IEEE 802.15.4 to let the
application/upper layer decide which addressing mode to use.
Upper layer implementation will be implemented in follow-up PR to #460