This adds support for netdevs implementing the new API that provides
`netdev_driver_t::confirm_send()`. This allows implementing netdevs
in an event based non-blocking fashion, making live of driver
developers a bit easier. In addition, `gnrc_tx_sync` will now throttle
users of `sock_udp_send()` so that they can only send datagrams as
fast as the network stack and hardware is able to send out.
Finally, this lays the groundwork to fetch TX statistics (such as
TX timestamps, reception of layer 2 ACKs/NACKs, etc.) from the network
devices.
- most were trivial
- missing group close or open
- extra space
- no doxygen comment
- name commad might open an implicit group
this hould also be implicit cosed but does not happen somtimes
- crazy: internal declared groups have to be closed internal
A if `netdev_driver_t::confirm_send()` is provided, it provides the
new netdev API. However, detecting the API at runtime and handling
both API styles comes at a cost. This can be optimized in case only
new or only old style netdevs are in use.
To do so, this adds the pseudo modules `netdev_legacy_api` and
`netdev_new_api`. As right now no netdev actually implements the new
API, all netdevs pull in `netdev_legacy_api`. If `netdev_legacy_api` is
in used but `netdev_new_api` is not, we can safely assume at compile
time that only legacy netdevs are in use. Similar, if only
`netdev_new_api` is used, only support for the new API is needed. Only
when both are in use, run time checks are needed.
This provides two helper function to check for a netif if the
corresponding netdev implements the old or the new API. (With one
being the inverse of the other.) They are suitable for constant folding
when only new or only legacy devices are in use. Consequently, dead
branches should be eliminated by the optimizer.
Synchronize the RPL thread updating the RPL netstats with the RPL
shell command reading it by disabling IRQs. This will prevent printing
corrupted data on non-32bit platforms as well as printing inconsistent
data (e.g. TX count of old state in conjunction with TX bytes of new
state) for all platforms.
Co-authored-by: Martine Lenders <mail@martine-lenders.eu>
Sending a RA with ltime = 0 does not get us added to the default router
list, but the options (and therefore the RIO) are still parsed.
This even appears to work with Linux as a receiver.
This commit implements uplink redundancy in GNRC LoRaWAN. Uplink
redundancy is used to retransmit unconfirmed uplink frames. The
retransmission stops when either a downlink message is received or the
number of uplink retransmissions is reached.
This functionality doesn't affect confirmed uplinks.