Since the GNRC_IPV6 is part of GNRC it should be a part of the gnrc compile time configuration group.
This adds information on the group to specify it is gnrc and changes the group from config to net_gnrc_conf
Typically a stack needs to add the callback for a sock as a member of
its respective `sock` type so `sock_types.h` needs to include
`net/sock/async.h` at the moment. As those however include
`net/sock/<prot>.h`, which in turn include `sock_types.h`, we create a
cyclic dependency.
This fix resolves this cyclic dependency, by putting the callback
definitions in its own header that then in turn can be also included
by `sock_types.h`.
Having the definitions sit in the `net/gnrc/sixlowpan/frag.h` header
does not make much sense, when using Selective Fragment Forwarding
(and the fragmentation buffer already includes a
`net/gnrc/sixlowpan/frag/stats.h` header), so they are moved to their
own header. Since with this change it makes more sense to have the
statistics stored in their own sub-module, the pseudo-module is also
actualized.
The ubjson module has a number of quality defects and is unsafe.
Considering CBOR is popular, standarized and supported in RIOT and that
the ubjson implementation is a home-grown one whose API will likely be
unfamiliar to new users, I propose to delete it.
This removal, of course, dows not have to be NOW. We can deprecate it for
one or two releases before.
What's wrong with this module?
- Unsafe: the parsing is done recursively. This is embedded in the API, so it
is not possible to fix it without changing the API. A document with too much
nesting can cause a stack overflow.
- Does not validate writing: it is possible to produce invalid output. From
the docs:
> The library won't complain if you write multiple values that are not
> inside an array or object. The result will just not be properly serialized.
- Poorly tested. As shown by #11702, #11703 the tests were not even detecting
that a False was stored as True.
- In line with the previous remark, see
68dc5b0d6e/tests/unittests/tests-ubjson/tests-ubjson.c (L66-L77)
Why is the following code in the unit tests??
```c
irq_disable();
sched_set_status(data->main_thread, STATUS_PENDING);
```
- #2175 is still unfixed after 3.5 years.
- Code quality. The code has multiline macros that assign variables and
return. See c332514875/sys/ubjson/ubjson-write.c (L34-L41)
Can we mark it as deprecated this release and sweep it in the following one?
`gnrc_sixlowpan_frag_rb_base_rm()` cleans up the intervals which is part
of `gnrc_sixlowpan_frag_rb`, not `gnrc_sixlowpan_frag`, so when the
`gnrc_sixlowpan_frag` is not compiled in, but `gnrc_sixlowpan_frag_rb`,
the intervals allocated in the reassembly buffer and inherited by the
virtual reassembly buffer are never released.
Preprocesor fails to evaluate the if condicion on L91-92 because
RTT_FREQUENCY is not defined, and therefore a division by 0 occurs.
TO avoid this replicate the RTT_FREQUENCY undefined warning.
Currently the bitfield type mixes up the order of bits: While the byte
order is big-endian (most significant byte first), the bit order of each
single byte within the bitfield is little-endian (most significant bit
last). While this isn't a problem for most applications of the bitfield
type it becomes one when sending the bitfield over the network (as done
e.g. in the [ACKs of Selective Fragment Recovery][SFR-ACKs]).
This change unifies byte order and bit order to both be most
significant bX first.
[SFR-ACKs]: https://tools.ietf.org/html/draft-ietf-6lo-fragment-recovery-07
Right now 'ipv6_addr_split_iface' assumes that the interface specifier
will always be a number (based on GNRC way of identifying interfaces),
but this may not be always the case.In order to be able to use the
Network Interface API, interfaces should be referred by their name.
This changes 'ipv6_addr_split_iface' so it returns a pointer to the
string that specifies the interface.
45f7966 made the `src_len` field the "emptiness signifier" for the VRB.
However, when `gnrc_sixlowpan_frag` is compiled in, the remove function
`gnrc_sixlowpan_frag_vrb_rm()` does not set the `src_len` to zero,
resulting in already deleted entry to be recognized as non-empty.
This allows to set a timer between the completion of a datagram in the
reassembly buffer and the deletion of the corresponding reassembly
buffer entry. This allows to ignore potentially late incoming link-layer
duplicates of fragments of the datagram that then will have the
reassembly buffer entry be blocked.
This was noted in this [discussion] for classic 6LoWPAN reassembly (and
minimal fragment forwarding) and is recommended in the current
[selective fragment recovery draft][SFR draft].
[discussion]: https://mailarchive.ietf.org/arch/msg/6lo/Ez0tzZDqawVn6AFhYzAFWUOtJns
[SFR draft]: https://tools.ietf.org/html/draft-ietf-6lo-fragment-recovery-07#section-6
cd1ce6b98d accidentally disabled generating documentation for
`xtimer_msg_*()` functions.
Always define those functions when building the documentation.
This imports the protocol parameters for Selective Fragment Recovery
(SFR). For the values I took some educated guesses based on my
experience with previous experimentation with fragment forwarding.
The defines currently are based on [draft v7].
[draft v7]: https://tools.ietf.org/html/draft-ietf-6lo-fragment-recovery-07#section-7.1
fixup! gnrc_sixlowpan_frag: initial import of SRF parameters