Our `gnrc_minimal` example configures the link-local address from the
IEEE 802.15.4 short address since it does not include 6Lo-ND.
This causes the application to be incompatible with our other GNRC
application that do include 6Lo-ND, since it [assumes][1] the link-local
address to be based on the EUI-64 for address resolution.
This enforces long addresses (aka EUI-64) for all IEEE 802.15.4 devices
when IPv6 is compiled in so `gnrc_minimal` is compatible again to the
rest.
Fixes#9910
[1]: https://tools.ietf.org/html/rfc6775#section-5.2
Linux doesn't have ARO support at the moment so this is a workaround to
try to speak 6Lo-ND while still being able to do DAD with a border
router that doesn't.
While `tmp` in the loop for write-protection for the check-sum
calculation is used to check the return value of
`gnrc_pktbuf_start_write()`, it was never overwriting `payload` causing
the original snip to be used in the following iteration `prev` when
duplicated, and destroying the sanity of `ipv6`.
This change is a gnrc_ipv6_nib/gnrc_netif(2)-based rework of #7210.
Packet duplication
==================
Its main optimization is that it restructures `gnrc_ipv6` handling of
sent packets so that duplication for write-protection happens at the
latest possible step:
* potential `gnrc_netif` headers added by upper layers are
write-protected before their removal
* This unifies the duplication of the IPv6 header directly after
that
* Extension headers in-between the IPv6 header and the payload header
are duplicated just before the check sum is duplicated
Especially the last point allows for only handing a single packet snip
to all lower functions instead of an already searched IPv6 header
(which now is always the first until it is handed to the interface) +
payload header.
Further clean-ups
=================
* Next-hop link-layer address determination was moved to the
`_send_unicast` function, greatly simplifying the unicast case in the
`_send` function
* Code for loopback case was added to a new function `_send_to_self`
* Removed some code duplication
Parts of [RFC4862] were already implemented when NDP via the NIB was
first implemented. This change just includes the DAD portion of
[RFC4862]. This should be enough to make RIOT fully RFC4862 compliant.
[RFC4862]: https://tools.ietf.org/html/rfc4862
If the payload length is zero and the next header field is not set to
NONXT, GNRC will interpret the current header as the payload because the
first snip is always interpreted as the payload. This can lead to loops
and or crashes.
When the payload length of an encapsulated IPv6 packet is 0, the
`_receive` function of IPv6 can be given a NULL pointer, causing the
IPv6 header checker to crash because of a NULL pointer dereference.
With the previous fix, we only have to register addresses that are not
VALID yet on reception of router advertisements. This removes the need
for the hacky `GNRC_NETIF_FLAGS_6LO_ADDRS_REG` flag that was only
introduced to prevent unnecessary re-registration.
The whole address registration looses its point if all addresses are
marked valid from the get-go. With this fix non-link-local addresses
are first marked TENTATIVE and only after successful registration
marked as VALID. Link-local addresses are assumed to always be VALID.
[RFC6775] only talks of *routers* processing router advertisements,
with regards of discarding them if they do not contain an ABRO.
Additionally, this change makes configuration of tests setups a lot
easier, where one note is a router distributing a prefix and the other
is a host to be configured with the RA. Just do the following on the
router:
```
> ifconfig <if> add <GUA>
> ifconfig <if> rtr_adv
```
e voilà! In current master both nodes would have needed to be compiled
with `GNRC_IPV6_NIB_CONF_MULTIHOP_P6C=0`.
[RFC6775]: https://tools.ietf.org/html/rfc6775#section-8.1.3
This fix
* assures that the periodicity of the final router advertisements is
kept (so that no administrative change e.g. adding prefixes to the
prefix list causes additional RAs outside the rate limitation)
* removes all administrative options (PIO, ABRO, 6CO) from final router
advertisements (with router lifetime == 0)
I applied the following terminology and changed the wording in the doc
accordingly:
* must not: If the parameter is of the value it *must not* be it either
hits an assert or crashes the system.
* may not: The value can be that value, but the function will return an
error.
This renames the following functions
* `gnrc_netif_ipv6_addr_add()`
* `gnrc_netif_ipv6_addr_remove()`
* `gnrc_netif_ipv6_group_join()`
* `gnrc_netif_ipv6_group_leave()`
by appending the suffix `_internal`.
\## Reasoning
I'd like to provide a helper function for the *public* equivalent using
`gnrc_netapi_set()`, and those names are to nice to not be taken for
those.
\## Procedure
I used a combination of `git grep` and `sed` to do this and fixed the
alignment in the result of some cases by hand.
```sh
git grep --name-only "\<gnrc_netif_ipv6_\(addr\|group\)_\(add\|remove\|join\|leave\)\>" | \
xargs sed -i 's/\<gnrc_netif_ipv6_\(addr\|group\)_\(add\|remove\|join\|leave\)/\0_internal/g'
```