Most of the caching operation was moved to the client code. Since the
forward proxy is using that code for upstream messaging, interacting
with the cache directly is not necessary anymore.
The only cache-related thing necessary for the proxy is validating ETags
from upstream. However, that can be done by just looking at the ETags
from the upstream response (which may or may not have come from the
cache).
23a8659bdf introduced DTLS support for
CoAP, but did not make it possible to select the transport on request.
Since switching between CoAP and CoAPS (CoAP-over-DTLS) as client is a
valid use case (one might want to e.g. talk to one server over CoAP and
to another over CoAPS), this change makes that possible.
The `coap_socket_t` and `coap_socket_type_t` types are used by gCoAP
only and the `coap_` prefix is usually used to namespace the `nanocoap`
module's API. This makes it confusing to locate the types in question.
Signed-off-by: Martine Lenders <m.lenders@fu-berlin.de>
Add a an assertion on the added listener not having a trailing chain
instead of silently overwriting it, point out the precondition in the
documentation, and guide users who want to add more than one listener
towards a more efficient way.
This introduces an additional state to the COAP_MEMO_* series to avoid
enlarging the memo struct needlessly. While they are documented
publicly, practically only the COAP_MEMO_TIMEOUT and COAP_MEMO_RESPONSE
are used in communication with the application, as a
gcoap_request_memo_t is only handed out in that state.
This generalizes the existing code for answering CoAP pings into general
message-layer responses. Such responses are now also sent as a reaction
to CON responses, which can otherwise follow the same code path as
existing other responses.
As a side effect, issues that would crop up when responding to odd empty
requests that have token length set are resolved.
Contributes-To: https://github.com/RIOT-OS/RIOT/issues/14169
This simplifies (written and compiled) code by doing a head rather than
a tail insertion of the new listener into gcoap's list.
As handling of listeners without a link_encoder is now fixed,
gcoap_get_resource_list can handles this now without having to manually
skip over the .well-known/core handler (which is not the first entry any
more now).
Incidentally, this allows the user to install a custom handler for
.well-known/core, as the default handler is now evaluated last.
The NULL case can not regularly be reached (because regularly
gcoap_register_listener sets thel link_encoder to a default one), but if
it is (eg. because an application unsets its link_encoder to hide a
resource set at runtime), the existing `continue` is a good idea (skip
over this entry) but erroneously created an endless loop by skipping the
advancement step.
This changes the prefixes of the symbols generated from USEMODULE and
USEPKG variables. The changes are as follow:
KCONFIG_MODULE_ => KCONFIG_USEMODULE_
KCONFIG_PKG_ => KCONFIG_USEPKG_
MODULE_ => USEMODULE_
PKG_ => USEPKG_