Adds a gnrc_netif specific rawmode flag to indicate that the netdev
device is configured in raw mode. This flag is kept in sync with a
possible flag in the netdev device and should only be modified via the
setter call.
gnrc_sock_recv used to duplicate functionality of gnrc_ipv6_get_header,
but additionally checked whether the IPv6 snip is large enough.
All checks are now included in gnrc_ipv6_get_header, but as most of them
stem from programming / user errors, they were moved into asserts; this
constitutes an API change.
For CoAP, there is actually a difference between
`/some/path` and `/some/path/`. This needs to be reflected
when parsing the URI and location path options from a given
string.
Our `gnrc_minimal` example configures the link-local address from the
IEEE 802.15.4 short address since it does not include 6Lo-ND.
This causes the application to be incompatible with our other GNRC
application that do include 6Lo-ND, since it [assumes][1] the link-local
address to be based on the EUI-64 for address resolution.
This enforces long addresses (aka EUI-64) for all IEEE 802.15.4 devices
when IPv6 is compiled in so `gnrc_minimal` is compatible again to the
rest.
Fixes#9910
[1]: https://tools.ietf.org/html/rfc6775#section-5.2
- add generic string put and get functions
- add location path and location query options
- add dedicated functions for getting and setting
URI query, URI path, location query, and location path
options
Currently the length of the full ICMPv6 packet is passed to the
validator function causing validation failures on valid packets. This
fixes that by passing the length of remaining RPL options of the packet.
The code originally assumed that the location of DIS struct is directly
after the ICMPv6 struct. This is not necessarily true when both structs
are individually allocated by pktbuf. This commit fixes this issue by
directly accessing the location of the DIS struct.
Linux doesn't have ARO support at the moment so this is a workaround to
try to speak 6Lo-ND while still being able to do DAD with a border
router that doesn't.
UDP port 0 is reserved for system usage, e.g., to tell the OS to
set a random source port. Hence, neither source nor destination
port should be 0 when transmitting. This PR adds proper asserts.
While `tmp` in the loop for write-protection for the check-sum
calculation is used to check the return value of
`gnrc_pktbuf_start_write()`, it was never overwriting `payload` causing
the original snip to be used in the following iteration `prev` when
duplicated, and destroying the sanity of `ipv6`.
A CoAP resource is a primary object between the application
and CoAP library. The Library needs the paths, methods,
and handlers from it, so that it can call the right handler.
However, it never needs to change any of them.
The application also needs the resources. The application
may want to declare the resources as const, since it may
want to store them in flash.
This refactors reception/decoding part of `gnrc_sixlowpan_iphc` to the
more layered approach modeled in #8511. Since the reception part is
already complicated enough I decided to divide send and receive up into
separate changes.
This refactors sending/encoding part of `gnrc_sixlowpan_iphc` to the
more layered approach modeled in #8511. Since the reception part is
already was pretty complicated to refactor, I decided to divide send
and receive up into separate changes.
This will be used in the IPHC refactoring to control the reassembly
buffer as a context.
I also adapted the name of `gnrc_sixlowpan_frag_gc_rbuf()` to be in
line with the rest of the newer functions.
Add additional checks to the port number parsing in str2ep to validate
the port number supplied in the string. This only verifies that the port
number is no longer than 5 chars and the resulting number fits in a
uint16_t.
It is still possible to supply up to 5 random chars.
URLs without a path were treated as invalid, while according to the URL
specification they are valid
Also fixes a missing null terminator in the returned path
On a NETOPT_STATE set call with NETOPT_STATE_RESET the netdev device
resets the callback event flags. This requires that after the netdev
device resets, the network stack also reapplies these callback event
flags
This change is a gnrc_ipv6_nib/gnrc_netif(2)-based rework of #7210.
Packet duplication
==================
Its main optimization is that it restructures `gnrc_ipv6` handling of
sent packets so that duplication for write-protection happens at the
latest possible step:
* potential `gnrc_netif` headers added by upper layers are
write-protected before their removal
* This unifies the duplication of the IPv6 header directly after
that
* Extension headers in-between the IPv6 header and the payload header
are duplicated just before the check sum is duplicated
Especially the last point allows for only handing a single packet snip
to all lower functions instead of an already searched IPv6 header
(which now is always the first until it is handed to the interface) +
payload header.
Further clean-ups
=================
* Next-hop link-layer address determination was moved to the
`_send_unicast` function, greatly simplifying the unicast case in the
`_send` function
* Code for loopback case was added to a new function `_send_to_self`
* Removed some code duplication
While refactoring IPHC I noticed that the page actually can already be
used for fragmentation: Given @cgundogan's work on [ICN LoWPAN] we can
already assume, that the page context may (among other thing) determine
the type of the reassembled packet. This PR provides the basis for
that.
[ICN LoWPAN]: https://tools.ietf.org/html/draft-gundogan-icnrg-ccnlowpan-01
While the current approach for garbage collection in the 6Lo reassembly
buffer is good for best-effort handling of
*fragmented* packets and nicely RAM saving, it has the problem that
incomplete, huge datagrams can basically DoS a node, if no further
fragmented datagram is received for a while (since the packet buffer is
full and GC is not triggered).
This change adds a asynchronous GC (utilizing the existing
functionality) to the reassembly buffer, so that even if there is no new
fragmented packet received, fragments older than `RBUF_TIMEOUT` will be
removed from the reassembly buffer, freeing up the otherwise wasted
packet buffer space.
Since IPHC also manipulates the total number of bytes of a received
datagram (by decompressing it), this also needs to be exposed. I guess
I was too focused on introducing a *generic* packet buffer for a future
virtual reassembly buffer (where it isn't needed, but so isn't `pkt` to
be honest), that I totally forgot about it in #9352.