This prevents gcc from figuring out that an XFA that has been
initialized in the same file is technically empty when the compilation
unit is seen by itself. This happened with gcc 10.1.0 on msp430-elf.
Due to limited compatibility with C, we cannot use the inline mutex_trylock
implementation for C++. Instead, we provide a mutex_trylock_ffi() intended for
foreign function interfaces. This should also benefit rust users.
Add a version of `mutex_lock()` that can be canceled with the obvious name
`mutex_lock_cancelable()`. This function returns `0` on success, and
`-ECANCELED` when the calling thread was unblocked via a call to
`mutex_cancel()` (and hence without obtaining the mutex).
This is intended to simplify the implementation of `xtimer_mutex_lock_timeout()`
and to implement `ztimer_mutex_lock_timeout()`.
- Split out handling of the blocking code path of mutex_lock() into a static
`_block()` function. This improves readability a bit and will ease review of
a follow up PR.
- Return `void` instead of `int`.
- Use static inline function for `mutex_try_lock()`
- The implementation is trivial enough with the inline-able IRQ API to just
always be inline-ed
- Rename `_mutex_lock()` to `mutex_lock()` and drop the blocking parameter
- This was possible to the stand-alone `mutex_try_lock()` implementation
- This yields a measurable performance bump
Currently it is not possible to check if a message was sent over a bus
or if it was send the usual way using `msg_send()`.
This adds a flag to the `sender_pid` if the message was sent over a bus.
`MAXTHREADS` is currently set to 32, so there is still plenty of room in
the PID space. (`kernel_pid_t` is `int16_t`)
The message type for bus message type is already accessed through a getter
function, so it's just consistent to do the same for sender_pid.