UDP port 0 is reserved for system usage, e.g., to tell the OS to
set a random source port. Hence, neither source nor destination
port should be 0 when transmitting. This PR adds proper asserts.
While `tmp` in the loop for write-protection for the check-sum
calculation is used to check the return value of
`gnrc_pktbuf_start_write()`, it was never overwriting `payload` causing
the original snip to be used in the following iteration `prev` when
duplicated, and destroying the sanity of `ipv6`.
A CoAP resource is a primary object between the application
and CoAP library. The Library needs the paths, methods,
and handlers from it, so that it can call the right handler.
However, it never needs to change any of them.
The application also needs the resources. The application
may want to declare the resources as const, since it may
want to store them in flash.
This refactors reception/decoding part of `gnrc_sixlowpan_iphc` to the
more layered approach modeled in #8511. Since the reception part is
already complicated enough I decided to divide send and receive up into
separate changes.
This refactors sending/encoding part of `gnrc_sixlowpan_iphc` to the
more layered approach modeled in #8511. Since the reception part is
already was pretty complicated to refactor, I decided to divide send
and receive up into separate changes.
This will be used in the IPHC refactoring to control the reassembly
buffer as a context.
I also adapted the name of `gnrc_sixlowpan_frag_gc_rbuf()` to be in
line with the rest of the newer functions.
Add additional checks to the port number parsing in str2ep to validate
the port number supplied in the string. This only verifies that the port
number is no longer than 5 chars and the resulting number fits in a
uint16_t.
It is still possible to supply up to 5 random chars.
URLs without a path were treated as invalid, while according to the URL
specification they are valid
Also fixes a missing null terminator in the returned path
On a NETOPT_STATE set call with NETOPT_STATE_RESET the netdev device
resets the callback event flags. This requires that after the netdev
device resets, the network stack also reapplies these callback event
flags
This change is a gnrc_ipv6_nib/gnrc_netif(2)-based rework of #7210.
Packet duplication
==================
Its main optimization is that it restructures `gnrc_ipv6` handling of
sent packets so that duplication for write-protection happens at the
latest possible step:
* potential `gnrc_netif` headers added by upper layers are
write-protected before their removal
* This unifies the duplication of the IPv6 header directly after
that
* Extension headers in-between the IPv6 header and the payload header
are duplicated just before the check sum is duplicated
Especially the last point allows for only handing a single packet snip
to all lower functions instead of an already searched IPv6 header
(which now is always the first until it is handed to the interface) +
payload header.
Further clean-ups
=================
* Next-hop link-layer address determination was moved to the
`_send_unicast` function, greatly simplifying the unicast case in the
`_send` function
* Code for loopback case was added to a new function `_send_to_self`
* Removed some code duplication
While refactoring IPHC I noticed that the page actually can already be
used for fragmentation: Given @cgundogan's work on [ICN LoWPAN] we can
already assume, that the page context may (among other thing) determine
the type of the reassembled packet. This PR provides the basis for
that.
[ICN LoWPAN]: https://tools.ietf.org/html/draft-gundogan-icnrg-ccnlowpan-01
While the current approach for garbage collection in the 6Lo reassembly
buffer is good for best-effort handling of
*fragmented* packets and nicely RAM saving, it has the problem that
incomplete, huge datagrams can basically DoS a node, if no further
fragmented datagram is received for a while (since the packet buffer is
full and GC is not triggered).
This change adds a asynchronous GC (utilizing the existing
functionality) to the reassembly buffer, so that even if there is no new
fragmented packet received, fragments older than `RBUF_TIMEOUT` will be
removed from the reassembly buffer, freeing up the otherwise wasted
packet buffer space.
Since IPHC also manipulates the total number of bytes of a received
datagram (by decompressing it), this also needs to be exposed. I guess
I was too focused on introducing a *generic* packet buffer for a future
virtual reassembly buffer (where it isn't needed, but so isn't `pkt` to
be honest), that I totally forgot about it in #9352.
This fixes an alignment issue I encountered in the static version of
the packet buffer.
The bug is caused by a race-condition where a certain order of
operations leads to a chunk being released according to the
byte-alignment of the platform, but overlapping potential space for
a future `_unused_t` struct e.g. (x mark allocated regions):
Future leak of size sizeof(_unused_t) Time
v |
+------------+-----+--------------------+ |
|xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx| +
+------------+-----+--------------------+ |
|
+------------+--+--+--------------------+ |
| |xxxxxxxxxxxxxxxxxxxxxxx| +
+------------+--+--+--------------------+ |
|
+-----+------+--+--+--------------------+ |
|xxxxx| |xxxxxxxxxxxxxxxxxxxxxxx| +
+-----+------+--+--+--------------------+ |
|
+-----+------+-----+---------+----------+ |
|xxxxx| |xxxxxxxxxx| +
+-----+------+-----+---------+----------+ |
|
+-----+------+-----+--------------------+ |
|xxxxx| |xxxxxxxxxxxxxxxxxxxxxxxxxx| +
+-----+------+-----+--------------------+ |
|
+------------+-----+--------------------+ |
|xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx| +
+------------+-----+--------------------+ |
|
+------------+-----+--------------------+ |
|xxxxxxxxxxxxxxxxxx| | +
+------------+-----+--------------------+ |
|
+------------+-----+--------------------+ |
| |xxxxx| | +
+------------+-----+--------------------+ |
v
Sadly, I wasn't able to create a reproducable unittest that show-cases
this corner-case, since I don't understand the order of operations that
cause this one 100%, but the bug is reproducable (but also not
reliably) by sending large (i.e. fragmented) packets to a 6Lo-enabled
host from more than 1 host simultaneously (use `gnrc_pktbuf_cmd` to
check).
By making the size of `_unused_t` the only condition for alignment,
this bug is fixed.
This refactors the `gnrc_sixlowpan_frag` module for the API proposed
in #8511.
The `ctx` for `gnrc_sixlowpan_frag_send()` is required to be a
`gnrc_sixlowpan_msg_frag_t` object, so IPHC can later on use it to
provide the *original* datagram size (otherwise, we would need to adapt
the API just for that, which seems to me as convoluted as this
proposal).
I also provide an expose function with a future possibility to provide
more than just one `gnrc_sixlowpan_msg_frag_t` object later on (plus
having cleaner module separation in general).
While working on #9352 I noticed that the order of members in the
`gnrc_sixlowpan_msg_frag_t` struct costs us 4 bytes in RAM due to byte
alignment. This PR fixes the order of members, so they are the most
packed.
This exposes the parts of the reassembly buffer to be usable as context
as proposed in #8511.
I only exposed *parts of* for two reasons:
1. I don't need to expose further types (like `rbuf_int_t`), that are
not of interest outside of fragmentation.
2. This allows for an easy future extension for the virtual reassembly
buffer as proposed in [[1]].
This makes this change a little bit more involved, because instead of
just renaming the type, I also need to add the usage of the `super`
member, but I think in the end this little preparation work will be
beneficial in the future.
[1]: https://tools.ietf.org/html/draft-watteyne-6lo-minimal-fragment-01#section-3
Fix re-register when using the same token.
Handle edge cases when change token for a resource.
Only set observer and resource on initial registration.
Discuss re-registration in documentation.
Otherwise, it may happen that `::` or a global address is chosen by
the IPv6 header fill function. Both types of addresses are
[not valid for RAs](https://tools.ietf.org/html/rfc4861#section-4.2)
Parts of [RFC4862] were already implemented when NDP via the NIB was
first implemented. This change just includes the DAD portion of
[RFC4862]. This should be enough to make RIOT fully RFC4862 compliant.
[RFC4862]: https://tools.ietf.org/html/rfc4862
With #9209 gCoAP got the ability to re-register and OBSERVE with a new
token, sadly the `observer` variable wasn't set in that fix, so a
re-registration actually led to the deletion of the observer (because it
is still `NULL` when the old registration is overwritten in l. 317)