In 06aa65e1ba (#10627) a new behavior was
introduced in IPv6 route resolution to try address resolution only at
interfaces that have the prefix of the address to be resolved configured
in the prefix list. This however only makes sense, if the prefix
configured is [on-link], otherwise there is small likelihood of the
address to be resolved being on that link.
For the error case presented for 06aa65e (circular routing at the border
router) this made sense, however within a 6LoWPAN, due to the prefix
being valid for the entire mesh, this leads to the nodes always trying
classic address resolution for in-network addresses instead of just
routing to the default route.
Classic address resolution however fails, as 6LoWPAN hosts typically
[don't join the solicited-node multicast address of their unicast
addresses][6LN-iface-init], resulting in in-network addresses not being
reachable.
As such, to prevent both error cases
- the fallback to address resolution by prefix list must only be used
when the prefix is on-link,
- the prefix configured by DHCPv6/UHCP at the 6LoWPAN border router
must be configured as on-link, but
- the prefix must not be advertised as on-link within the 6LoWPAN to
still be [in line with RFC 6775][RFC-6775-forbidden]
With this change these cases are covered.
[on-link]: https://tools.ietf.org/html/rfc4861#page-6
[RFC 6775]: https://tools.ietf.org/html/rfc6775
[6LN-iface-init]: https://tools.ietf.org/html/rfc6775#section-5.2
[RFC-6775-forbidden]: https://tools.ietf.org/html/rfc6775#section-6.1
When pinging to a prefix for which there is a prefix list entry on the
node (so no next hop) but a default route, a packet to a non-existent
address under that prefix results in the packet being forwarded to the
default route instead. This fixes it, so the node tries address
resolution on the interface the prefix list entry is associated to.
When the NIB is compiled for 6LN mode (but not a 6LBR), the Stateless
Address Autoconfiguration (SLAAC) functionality is disabled, as it is
typically not required; see `sys/include/net/gnrc/ipv6/nib/conf.h`, ll.
46 and 55. However, if a non-6LN interface is also compiled in (still
without making the node a border router) an auto-configured address will
be assigned in accordance with [RFC 6775] to the interface, just
assuming the interface is a 6LN interface. As it then only performs
duplicate address detection RFC-6775-style then, the address then never
becomes valid, as the duplicate address detection according to [RFC
4862] (part of the SLAAC functionality) is never performed.
As auto-configuring an address without SLAAC doesn't make sense, this
fix makes the interface skip it completely, but provides a warning to
the user, so they know what to do.
[RFC 6775]: https://tools.ietf.org/html/rfc6775#section-5.2
[RFC 4862]: https://tools.ietf.org/html/rfc4862#section-5.4
The `addr` parameter of the NIB's `_handle_dad()` function can come
from anywhere (e.g. in the fallback to classic SLAAC the destination
address of the IP header is used), so putting that pointer in a timer
is not a good idea. Instead we use the version of the address that is
stored within the interface.
If the interface's link-layer doesn't use link-layer addresses it
obviously doesn't make sense to auto-configure an IPv6 address from it.
Moreover, I think the address `fe80::` is actual illegal, but I
couldn't find any references for it.
According to the documentation of `gnrc_ipv6_nib_get_next_hop_l2addr()`
`pkt` may be `NULL`. However, whenever that function sends an error
message (the methods for that require `orig_pkt` not to be NULL) `pkt`
is not checked, which may lead to failed assertions.
Currently the constructed NA for a delayed NA case is neither used nor
released nor does it get an IPv6 header to be used properly. This fixes
that case.