Adds a separate board for native64 instead of the `NATIVE_64BIT` workaround.
The files in `boards/native64` are more or less dummy files and just include
the `boards/native` logic (similar to `openlabs-kw41z-mini-256kib`).
The main logic for native is in `makefiles/arch/native.inc.mk`, `cpu/native`
and `boards/native`.
The remaining changes concern the build system, and change native board checks
to native CPU checks to cover both boards.
* Added arch_64bit feature and added it to all packages that require 32 bit.
* hacl, wolfssl: Fixed different types between function declaration and implementation.
* lwip: Add required flag for 64 bit and bug fix in `lwip_sock`.
* micro-ecc: Workaround for GCC warning when using `__int128`.
The correct way to overrride the malloc family of functions in newlib-nano is
to provide the *_r (reentrant) variants. Newlib implements the "normal"
functions on top of these (see the newlib source code). Also, internally it calls
the *_r functions when allocating buffers.
If only the "normal" non-reentrant functions are provided this will mean that
some of the code will still use the vanilla newlib allocator. Furthermore, if
one uses the whole heap as a pool for TLSF then the system may in the best case
crash as there is no enough memory for its internall allocations or in the worst
case function eratically (this depends on how the heap reserved, there is an
upcomming series of commits in that direction).
This commit splits the handling between newlib and native. It also prepares the
ground for future work on the pool initialization.
Right now I could only test this in ARM and native and I cannot ensure it will
work on other platforms. Replacing the system's memory allocator is not something
that can be taken lightly and will inevitably require diving into the depths of
the libc. Therefore I would say that using TLSF as a system wide allocator is ATM
supported officially only on those plaftorms.
Testing:
Aside from reading the newlib sources, you can see the issue in a live system
using the debugger.
Compile any example (with or without tlsf-malloc), grab a debugger and place
a breakpoint in sbrk and _sbrk_r. Doing a backtrace will reveal it gets called
by _malloc_r.