This change allows the port for local endpoint to be zero 0. If this is
the case the `sock_udp_create()` function binds the object to an
ephemeral port.
While working on #9352 I noticed that the order of members in the
`gnrc_sixlowpan_msg_frag_t` struct costs us 4 bytes in RAM due to byte
alignment. This PR fixes the order of members, so they are the most
packed.
This exposes the parts of the reassembly buffer to be usable as context
as proposed in #8511.
I only exposed *parts of* for two reasons:
1. I don't need to expose further types (like `rbuf_int_t`), that are
not of interest outside of fragmentation.
2. This allows for an easy future extension for the virtual reassembly
buffer as proposed in [[1]].
This makes this change a little bit more involved, because instead of
just renaming the type, I also need to add the usage of the `super`
member, but I think in the end this little preparation work will be
beneficial in the future.
[1]: https://tools.ietf.org/html/draft-watteyne-6lo-minimal-fragment-01#section-3
While browsing through the rendered doc, I found the precondition of
`gnrc_netreg_register()` somewhat lacking. What is a "message queue"?
`gnrc_netreg_entry_t`s have types. Does this apply for all types?
This specifies the requirement more: The calling thread **only** needs
a message queue (also provides a link to `msg_init_queue()` now for
further information), if the provided `gnrc_netreg_entry_t` is of type
`GNRC_NETREG_TYPE_DEFAULT` (i.e. thread-wise IPC).
Fix re-register when using the same token.
Handle edge cases when change token for a resource.
Only set observer and resource on initial registration.
Discuss re-registration in documentation.
Provides functions for type 3, 4 and 5 UUID generations.
UUID type 1 is timestamp based and requires an accurate time source. For
this reason it is left out of this implementation. UUID type 2 is not
defined in RFC 4122 and thus also not included here
Reordered struct members to not waste memory due to padding.
Before:
``` C
typedef struct {
uint8_t src_l2addr_len;
uint8_t dst_l2addr_len;
kernel_pid_t if_pid; // <-- 16 bit, is aligned to 16 bit
uint8_t flags;
uint8_t __padding_byte; // <-- Inserted to fulfill padding requirements
int16_t rssi; // <-- 16 bit, is NOT aligned to 16 bit
uint8_t lqi;
uint8_t __padding_byte2;// <-- Inserted to fulfill padding requirements
} gnrc_netif_hdr_t;
```
Now:
``` C
typedef struct {
uint8_t src_l2addr_len;
uint8_t dst_l2addr_len;
kernel_pid_t if_pid; // <-- 16 bit, is aligned to 16 bit
uint8_t flags;
uint8_t lqi;
int16_t rssi; // <-- 16 bit, is aligned to 16 bit
} gnrc_netif_hdr_t;
```
When build for the `bluepill` board, the new layout reduces the size by 2 bytes.