1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00

Merge pull request #12815 from benpicco/atmega-rtt

cpu/atmega_common: RTT support
This commit is contained in:
benpicco 2019-12-01 19:30:55 +01:00 committed by GitHub
commit c9e9e04c6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 343 additions and 1 deletions

View File

@ -2,6 +2,7 @@ CPU = atmega256rfr2
FEATURES_PROVIDED += periph_adc
FEATURES_PROVIDED += periph_i2c
FEATURES_PROVIDED += periph_rtt
FEATURES_PROVIDED += periph_spi
FEATURES_PROVIDED += periph_timer
FEATURES_PROVIDED += periph_uart

View File

@ -1,8 +1,8 @@
CPU = atmega256rfr2
FEATURES_PROVIDED += periph_adc
FEATURES_PROVIDED += periph_i2c
FEATURES_PROVIDED += periph_rtt
FEATURES_PROVIDED += periph_spi
FEATURES_PROVIDED += periph_timer
FEATURES_PROVIDED += periph_uart

View File

@ -2,6 +2,7 @@ CPU = atmega128rfa1
FEATURES_PROVIDED += periph_adc
FEATURES_PROVIDED += periph_i2c
FEATURES_PROVIDED += periph_rtt
FEATURES_PROVIDED += periph_spi
FEATURES_PROVIDED += periph_timer
FEATURES_PROVIDED += periph_uart

View File

@ -2,6 +2,7 @@ CPU = atmega256rfr2
FEATURES_PROVIDED += periph_adc
FEATURES_PROVIDED += periph_i2c
FEATURES_PROVIDED += periph_rtt
FEATURES_PROVIDED += periph_spi
FEATURES_PROVIDED += periph_timer
FEATURES_PROVIDED += periph_uart

View File

@ -3,6 +3,7 @@ CPU = atmega1284p
# Put defined MCU peripherals here (in alphabetical order)
FEATURES_PROVIDED += periph_adc
FEATURES_PROVIDED += periph_i2c
FEATURES_PROVIDED += periph_rtt
FEATURES_PROVIDED += periph_spi
FEATURES_PROVIDED += periph_timer
FEATURES_PROVIDED += periph_uart

View File

@ -174,6 +174,19 @@ typedef struct {
* @brief WDT can be stopped on AVR
*/
#define WDT_HAS_STOP (1)
/** @} */
/**
* @name RTT configuration
* @{
*/
#define RTT_MAX_VALUE (0x00FFFFFF) /* 24-bit timer */
/* possible values: 32, 128, 256, 512, 1024, 4096, 32768 */
#ifndef RTT_FREQUENCY
#define RTT_FREQUENCY (1024U) /* in Hz. */
#endif
/** @} */
#ifdef __cplusplus
}

View File

@ -0,0 +1,325 @@
/*
* Copyright (C) 2018 Acutam Automation, LLC
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/*
* @ingroup cpu_atmega_common
* @ingroup drivers_periph_rtt
* @{
*
* @file
* @brief Low-level ATmega RTT driver implementation
*
* @note The RTT only works if the board is equipped with a 32kHz
* oscillator.
*
* @author Matthew Blue <matthew.blue.neuro@gmail.com>
*
* In order to safely sleep when using the RTT:
* 1. Disable interrupts
* 2. Write to one of the asynch registers (e.g. TCCR2A)
* 3. Wait for ASSR register's busy flags to clear
* 4. Re-enable interrupts
* 5. Sleep before interrupt re-enable takes effect
*
* @}
*/
#include <avr/interrupt.h>
#include "cpu.h"
#include "irq.h"
#include "periph/rtt.h"
#include "periph_conf.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
typedef struct {
uint16_t ext_comp; /* Extend compare to 24-bits */
rtt_cb_t alarm_cb; /* callback called from RTT alarm */
void *alarm_arg; /* argument passed to the callback */
rtt_cb_t overflow_cb; /* callback called when RTT overflows */
void *overflow_arg; /* argument passed to the callback */
} rtt_state_t;
static rtt_state_t rtt_state;
static uint16_t ext_cnt;
static inline void _asynch_wait(void)
{
/* Wait until all busy flags clear. According to the datasheet,
* this can take up to 2 positive edges of TOSC1 (32kHz). */
while (ASSR & ((1 << TCN2UB) | (1 << OCR2AUB) | (1 << OCR2BUB)
| (1 << TCR2AUB) | (1 << TCR2BUB))) {}
}
/* interrupts are disabled here */
static uint32_t _safe_cnt_get(void)
{
uint8_t cnt = TCNT2;
/* If an overflow occurred since we disabled interrupts, manually
* increment `ext_cnt`
*/
if (TIFR2 & (1 << TOV2)) {
++ext_cnt;
/* If an overflow occurred just after we read `TCNT2`
it has overflown back to zero now */
if (cnt == 255) {
cnt = 0;
}
/* Clear interrupt flag */
TIFR2 = (1 << TOV2);
}
return (ext_cnt << 8) | cnt;
}
static inline uint8_t _rtt_div(uint16_t freq)
{
switch (freq) {
case 32768: return 0x1;
case 4096: return 0x2;
case 1024: return 0x3;
case 512: return 0x4;
case 256: return 0x5;
case 128: return 0x6;
case 32: return 0x7;
default : assert(0);
}
}
void rtt_init(void)
{
DEBUG("Initializing RTT\n");
rtt_poweron();
/*
* From the datasheet section "Asynchronous Operation of Timer/Counter2"
* p148 for ATmega1284P.
* 1. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.
* 2. Select clock source by setting AS2 as appropriate.
* 3. Write new values to TCNT2, OCR2x, and TCCR2x.
* 4. To switch to asynchronous: Wait for TCN2UB, OCR2xUB, TCR2xUB.
* 5. Clear the Timer/Counter2 Interrupt Flags.
* 6. Enable interrupts, if needed
*/
/* Disable all timer 2 interrupts */
TIMSK2 = 0;
/* Select asynchronous clock source */
ASSR = (1 << AS2);
/* Set counter to 0 */
TCNT2 = 0;
/* Reset compare values */
OCR2A = 0;
OCR2B = 0;
/* Reset timer control */
TCCR2A = 0;
/* 32768Hz / n */
TCCR2B = _rtt_div(RTT_FREQUENCY);
/* Wait until not busy anymore */
DEBUG("RTT waits until ASSR not busy\n");
_asynch_wait();
/* Clear interrupt flags */
/* Oddly, this is done by writing ones; see datasheet */
TIFR2 = (1 << OCF2B) | (1 << OCF2A) | (1 << TOV2);
/* Enable 8-bit overflow interrupt */
TIMSK2 |= (1 << TOIE2);
DEBUG("RTT initialized\n");
}
void rtt_set_overflow_cb(rtt_cb_t cb, void *arg)
{
/* Make non-atomic write to callback atomic */
unsigned state = irq_disable();
rtt_state.overflow_cb = cb;
rtt_state.overflow_arg = arg;
irq_restore(state);
}
void rtt_clear_overflow_cb(void)
{
/* Make non-atomic write to callback atomic */
unsigned state = irq_disable();
rtt_state.overflow_cb = NULL;
rtt_state.overflow_arg = NULL;
irq_restore(state);
}
uint32_t rtt_get_counter(void)
{
unsigned state;
uint32_t now;
/* Make sure it is safe to read TCNT2, in case we just woke up */
DEBUG("RTT sleeps until safe to read TCNT2\n");
TCCR2A = 0;
_asynch_wait();
state = irq_disable();
now = _safe_cnt_get();
irq_restore(state);
return now;
}
void rtt_set_counter(uint32_t counter)
{
/* Wait until not busy anymore (should be immediate) */
DEBUG("RTT sleeps until safe to write TCNT2\n");
_asynch_wait();
/* Make non-atomic writes atomic (for concurrent access) */
unsigned state = irq_disable();
/* Prevent overflow flag from being set during update */
TCNT2 = 0;
/* Clear overflow flag */
/* Oddly, this is done by writing a one; see datasheet */
TIFR2 = 1 << TOV2;
ext_cnt = (uint16_t)(counter >> 8);
TCNT2 = (uint8_t)counter;
irq_restore(state);
DEBUG("RTT set counter TCNT2: %" PRIu8 ", ext_cnt: %" PRIu16 "\n",
TCNT2, ext_cnt);
}
void rtt_set_alarm(uint32_t alarm, rtt_cb_t cb, void *arg)
{
/* Disable alarm */
rtt_clear_alarm();
/* Make sure it is safe to read TCNT2, in case we just woke up, and */
/* safe to write OCR2B (in case it was busy) */
DEBUG("RTT sleeps until safe read TCNT2 and to write OCR2B\n");
TCCR2A = 0;
_asynch_wait();
/* Make non-atomic writes atomic */
unsigned state = irq_disable();
uint32_t now = _safe_cnt_get();
/* Set the alarm value. Atomic for concurrent access */
rtt_state.ext_comp = (uint16_t)(alarm >> 8);
OCR2A = (uint8_t)alarm;
rtt_state.alarm_cb = cb;
rtt_state.alarm_arg = arg;
irq_restore(state);
DEBUG("RTT set alarm TCNT2: %" PRIu8 ", OCR2A: %" PRIu8 "\n", TCNT2, OCR2A);
/* Enable alarm interrupt only if it will trigger before overflow */
if (rtt_state.ext_comp <= (uint16_t)(now >> 8)) {
/* Clear interrupt flag */
TIFR2 = (1 << OCF2A);
/* Enable interrupt */
TIMSK2 |= (1 << OCIE2A);
DEBUG("RTT alarm interrupt active\n");
}
else {
DEBUG("RTT alarm interrupt not active\n");
}
}
uint32_t rtt_get_alarm(void)
{
return (rtt_state.ext_comp << 8) | OCR2A;
}
void rtt_clear_alarm(void)
{
/* Make non-atomic writes atomic */
unsigned state = irq_disable();
/* Disable alarm interrupt */
TIMSK2 &= ~(1 << OCIE2A);
rtt_state.alarm_cb = NULL;
rtt_state.alarm_arg = NULL;
irq_restore(state);
}
void rtt_poweron(void)
{
power_timer2_enable();
}
void rtt_poweroff(void)
{
power_timer2_disable();
}
ISR(TIMER2_OVF_vect)
{
atmega_enter_isr();
ext_cnt++;
/* Enable RTT alarm if overflowed enough times */
if (rtt_state.ext_comp <= ext_cnt) {
/* Clear interrupt flag */
TIFR2 = (1 << OCF2A);
/* Enable interrupt */
TIMSK2 |= (1 << OCIE2A);
}
/* Virtual 24-bit timer overflowed */
if (ext_cnt == 0) {
/* Execute callback */
if (rtt_state.overflow_cb != NULL) {
rtt_state.overflow_cb(rtt_state.overflow_arg);
}
}
atmega_exit_isr();
}
ISR(TIMER2_COMPA_vect)
{
atmega_enter_isr();
/* Disable alarm interrupt */
TIMSK2 &= ~(1 << OCIE2A);
if (rtt_state.alarm_cb != NULL) {
/* Clear callback */
rtt_cb_t cb = rtt_state.alarm_cb;
rtt_state.alarm_cb = NULL;
/* Execute callback */
cb(rtt_state.alarm_arg);
}
atmega_exit_isr();
}