1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00

drivers/hdc1000: remodeled driver

- cleaned up interface
- made read functions return phyical values
- made resolution configurable at initialization time
- added default parameter configuration file
- added SAUL support for the driver
This commit is contained in:
Hauke Petersen 2016-01-15 17:44:02 +01:00
parent 456ae68fbe
commit 976cf30281
7 changed files with 360 additions and 199 deletions

View File

@ -73,6 +73,10 @@ ifneq (,$(filter ethos,$(USEMODULE)))
USEMODULE += tsrb
endif
ifneq (,$(filter hdc1000,$(USEMODULE)))
USEMODULE += xtimer
endif
ifneq (,$(filter hih6130,$(USEMODULE)))
USEMODULE += xtimer
endif

View File

@ -82,3 +82,6 @@ endif
ifneq (,$(filter si70xx,$(USEMODULE)))
USEMODULE_INCLUDES += $(RIOTBASE)/drivers/si70xx/include
endif
ifneq (,$(filter hdc1000,$(USEMODULE)))
USEMODULE_INCLUDES += $(RIOTBASE)/drivers/hdc1000/include
endif

View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2014 PHYTEC Messtechnik GmbH
* 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
@ -15,176 +16,107 @@
* @brief Driver for the TI HDC1000 Humidity and Temperature Sensor.
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "assert.h"
#include "xtimer.h"
#include "periph/i2c.h"
#include "hdc1000.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Register Map
*/
#define HDC1000_TEMPERATURE 0x00
#define HDC1000_HUMIDITY 0x01
#define HDC1000_CONFG 0x02
#define HDCD1000_SID1 0xFB
#define HDCD1000_SID2 0xFC
#define HDCD1000_SID3 0xFD
#define HDC1000_MANUFACTURER_ID 0xFE
#define HDC1000_DEVICE_ID 0xFF
/**
* @brief Configuration Register Description
*/
#define HDC1000_CONFG_RST (1 << 15)
#define HDC1000_CONFG_HEAT (1 << 13)
#define HDC1000_CONFG_SEQ_MOD (1 << 12)
#define HDC1000_CONFG_BTST_LOW (1 << 11)
#define HDC1000_CONFG_TRES_MSK (1 << 10)
#define HDC1000_CONFG_TRES_11 (1 << 10)
#define HDC1000_CONFG_TRES_14 0
#define HDC1000_CONFG_HRES_MSK (1 << 9 | 1 << 8)
#define HDC1000_CONFG_HRES_14 0
#define HDC1000_CONFG_HRES_11 (1 << 8)
#define HDC1000_CONFG_HRES_8 (1 << 9)
/**
* @brief Manufacturer and Device ID
*/
#define HDC1000_MID_VALUE 0x5449
#define HDC1000_DID_VALUE 0x1000
#define I2C_SPEED I2C_SPEED_FAST
int hdc1000_test(hdc1000_t *dev)
int hdc1000_init(hdc1000_t *dev, const hdc1000_params_t *params)
{
uint8_t reg[2];
uint16_t tmp;
i2c_acquire(dev->i2c);
if (i2c_read_regs(dev->i2c, dev->addr, HDC1000_MANUFACTURER_ID, reg, 2) != 2) {
i2c_release(dev->i2c);
return -1;
/* write device descriptor */
memcpy(&dev->p, params, sizeof(hdc1000_params_t));
/* initialize the I2C bus */
i2c_acquire(dev->p.i2c);
if (i2c_init_master(dev->p.i2c, I2C_SPEED) < 0) {
i2c_release(dev->p.i2c);
return HDC1000_NOBUS;
}
/* try if we can interact with the device by reading its manufacturer ID */
if (i2c_read_regs(dev->p.i2c, dev->p.addr,
HDC1000_MANUFACTURER_ID, reg, 2) != 2) {
i2c_release(dev->p.i2c);
return HDC1000_NOBUS;
}
i2c_release(dev->i2c);
tmp = ((uint16_t)reg[0] << 8) | reg[1];
if (tmp != HDC1000_MID_VALUE) {
return -1;
i2c_release(dev->p.i2c);
return HDC1000_NODEV;
}
return 0;
}
int hdc1000_init(hdc1000_t *dev, i2c_t i2c, uint8_t address)
{
uint8_t reg[2];
/* write device descriptor */
dev->i2c = i2c;
dev->addr = address;
dev->initialized = false;
i2c_acquire(dev->i2c);
/* initialize the I2C bus */
if (i2c_init_master(i2c, I2C_SPEED) < 0) {
i2c_release(dev->i2c);
return -1;
}
i2c_release(dev->i2c);
if (hdc1000_test(dev)) {
return -2;
}
/* set 14 bit resolution for both sensors and sequence mode */
uint16_t tmp = HDC1000_CONFG_SEQ_MOD;
/* set resolution for both sensors and sequence mode */
tmp = (HDC1000_SEQ_MOD | dev->p.res);
reg[0] = (tmp >> 8);
reg[1] = tmp;
i2c_acquire(dev->i2c);
if (i2c_write_regs(dev->i2c, dev->addr, HDC1000_CONFG, reg, 2) != 2) {
i2c_release(dev->i2c);
return -3;
if (i2c_write_regs(dev->p.i2c, dev->p.addr, HDC1000_CONFIG, reg, 2) != 2) {
i2c_release(dev->p.i2c);
return HDC1000_NOBUS;
}
dev->initialized = true;
i2c_release(dev->p.i2c);
i2c_release(dev->i2c);
return 0;
/* all set */
return HDC1000_OK;
}
int hdc1000_reset(hdc1000_t *dev)
void hdc1000_trigger_conversion(hdc1000_t *dev)
{
uint8_t reg[2];
uint16_t tmp = HDC1000_CONFG_RST;
reg[0] = (tmp >> 8);
reg[1] = tmp;
dev->initialized = false;
assert(dev);
i2c_acquire(dev->i2c);
if (i2c_write_regs(dev->i2c, dev->addr, HDC1000_CONFG, reg, 2) != 2) {
i2c_release(dev->i2c);
return -1;
}
i2c_acquire(dev->p.i2c);
i2c_release(dev->i2c);
return 0;
}
int hdc1000_startmeasure(hdc1000_t *dev)
{
if (dev->initialized == false) {
return -1;
}
i2c_acquire(dev->i2c);
/* Trigger the measurements by executing a write access
* to the address 0x00 (HDC1000_TEMPERATURE).
* Conversion Time is 6.50ms by 14 bit resolution.
* Conversion Time is 6.50ms for each value for 14 bit resolution.
*/
if (i2c_write_byte(dev->i2c, dev->addr, HDC1000_TEMPERATURE) != 1) {
i2c_release(dev->i2c);
return -1;
}
i2c_write_byte(dev->p.i2c, dev->p.addr, HDC1000_TEMPERATURE);
i2c_release(dev->i2c);
return 0;
i2c_release(dev->p.i2c);
}
int hdc1000_read(hdc1000_t *dev, uint16_t *rawtemp, uint16_t *rawhum)
void hdc1000_get_results(hdc1000_t *dev, int16_t *temp, int16_t *hum)
{
assert(dev);
uint8_t buf[4];
uint16_t traw, hraw;
if (dev->initialized == false) {
return -1;
/* first we read the RAW results from the device */
i2c_acquire(dev->p.i2c);
i2c_read_bytes(dev->p.i2c, dev->p.addr, buf, 4);
i2c_release(dev->p.i2c);
/* and finally we convert the values to their physical representation */
if (temp) {
traw = ((uint16_t)buf[0] << 8) | buf[1];
*temp = (int16_t)((((int32_t)traw * 16500) >> 16) - 4000);
}
i2c_acquire(dev->i2c);
if (i2c_read_bytes(dev->i2c, dev->addr, buf, 4) != 4) {
i2c_release(dev->i2c);
return -1;
if (hum) {
hraw = ((uint16_t)buf[2] << 8) | buf[3];
*hum = (int16_t)(((int32_t)hraw * 10000) >> 16);
}
/* Register bytes are sent MSB first. */
*rawtemp = ((uint16_t)buf[0] << 8) | buf[1];
*rawhum = ((uint16_t)buf[2] << 8) | buf[3];
i2c_release(dev->i2c);
return 0;
}
void hdc1000_convert(uint16_t rawtemp, uint16_t rawhum, int *temp, int *hum)
void hdc1000_read(hdc1000_t *dev, int16_t *temp, int16_t *hum)
{
/* calculate temperature*100 [°C] */
*temp = (int)((((int32_t)rawtemp * 16500) >> 16) - 4000);
DEBUG("hdc1000 : T: %d\n", *temp);
/* calculate relative humidity*100 [%RH] */
*hum = (int)(((int32_t)rawhum * 10000) >> 16);
DEBUG("hdc1000 : RH: %d\n", *hum);
hdc1000_trigger_conversion(dev);
xtimer_usleep(HDC1000_CONVERSION_TIME);
hdc1000_get_results(dev, temp, hum);
}

View File

@ -0,0 +1,60 @@
/*
* Copyright (C) 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_hdc1000
* @{
*
* @file
* @brief HDC1000 adaption to the RIOT actuator/sensor interface
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <string.h>
#include "saul.h"
#include "hdc1000.h"
static int read_temp(void *dev, phydat_t *res)
{
hdc1000_t *d = (hdc1000_t *)dev;
hdc1000_read(d, &(res->val[0]), NULL);
memset(&(res->val[1]), 0, 2 * sizeof(int16_t));
res->unit = UNIT_TEMP_C;
res->scale = -2;
return 1;
}
static int read_hum(void *dev, phydat_t *res)
{
hdc1000_t *d = (hdc1000_t *)dev;
hdc1000_read(d, NULL, &(res->val[0]));
memset(&(res->val[1]), 0, 2 * sizeof(int16_t));
res->unit = UNIT_PERCENT;
res->scale = -2;
return 1;
}
const saul_driver_t hdc1000_saul_temp_driver = {
.read = read_temp,
.write = saul_notsup,
.type = SAUL_SENSE_TEMP,
};
const saul_driver_t hdc1000_saul_hum_driver = {
.read = read_hum,
.write = saul_notsup,
.type = SAUL_SENSE_HUM,
};

View File

@ -0,0 +1,76 @@
/*
* Copyright (C) 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_hdc1000
*
* @{
* @file
* @brief Default configuration for HDC1000 devices
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef HDC1000_PARAMS_H
#define HDC1000_PARAMS_H
#include "board.h"
#include "hdc1000.h"
#include "saul_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Set default configuration parameters for the HDC1000 driver
* @{
*/
#ifndef HDC1000_PARAM_I2C
#define HDC1000_PARAM_I2C I2C_DEV(0)
#endif
#ifndef HDC1000_PARAM_ADDR
#define HDC1000_PARAM_ADDR (HDC1000_I2C_ADDRESS)
#endif
#ifndef HDC1000_PARAM_RES
#define HDC1000_PARAM_RES HDC1000_14BIT
#endif
#define HDC1000_PARAMS_DEFAULT { .i2c = HDC1000_PARAM_I2C, \
.addr = HDC1000_PARAM_ADDR, \
.res = HDC1000_PARAM_RES }
/**@}*/
/**
* @brief HDC1000 configuration
*/
static const hdc1000_params_t hdc1000_params[] =
{
#ifdef HDC1000_PARAMS_BOARD
HDC1000_PARAMS_BOARD,
#else
HDC1000_PARAMS_DEFAULT,
#endif
};
/**
* @brief Additional meta information to keep in the SAUL registry
*/
static const saul_reg_info_t hdc1000_saul_info[] =
{
{
.name = "hdc1000",
},
};
#ifdef __cplusplus
}
#endif
#endif /* HDC1000_PARAMS_H */
/** @} */

View File

@ -0,0 +1,73 @@
/*
* Copyright (C) 2014 PHYTEC Messtechnik GmbH
* 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_hdc1000
* @{
*
* @file
* @brief Register definitions for HDC1000 devices
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef HDC1000_REGS_H_
#define HDC1000_REGS_H_
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief Manufacturer and Device IDs
* @{
*/
#define HDC1000_MID_VALUE 0x5449
#define HDC1000_DID_VALUE 0x1000
/** @} */
/**
* @brief Register Map
* @{
*/
#define HDC1000_TEMPERATURE (0x00)
#define HDC1000_HUMIDITY (0x01)
#define HDC1000_CONFIG (0x02)
#define HDC1000_SID1 (0xFB)
#define HDC1000_SID2 (0xFC)
#define HDC1000_SID3 (0xFD)
#define HDC1000_MANUFACTURER_ID (0xFE)
#define HDC1000_DEVICE_ID (0xFF)
/** @} */
/**
* @brief Configuration register bitmap
* @{
*/
#define HDC1000_RST (1 << 15)
#define HDC1000_HEAT (1 << 13)
#define HDC1000_SEQ_MOD (1 << 12)
#define HDC1000_BTST_LOW (1 << 11)
#define HDC1000_TRES_MSK (1 << 10)
#define HDC1000_TRES11 (1 << 10)
#define HDC1000_TRES14 (0)
#define HDC1000_HRES_MSK (1 << 9 | 1 << 8)
#define HDC1000_HRES14 (0)
#define HDC1000_HRES11 (1 << 8)
#define HDC1000_HRES8 (1 << 9)
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* HDC1000_REGS_H_ */
/** @} */

View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2014 PHYTEC Messtechnik GmbH
* 2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
@ -9,126 +10,138 @@
/**
* @defgroup drivers_hdc1000 HDC1000 Humidity and Temperature Sensor
* @ingroup drivers_sensors
* @brief Driver for the Texas Instruments HDC1000
* Humidity and Temperature Sensor.
* The driver will initialize the sensor for best
* resolution (14 bit). Currently the driver doesn't use the heater.
* Temperature and humidity are acquired in sequence.
* The sensor is always in sleep mode. The measurement must
* be started by a write access to the address 0x00
* (HDC1000_TEMPERATURE). After completing the measurement
* the sensor will return to sleep mode. Typical
* Conversion Time by 14 bit resolution is 6.50ms
* for humidity and 6.35ms for temperature.
* HDC1000_CONVERSION_TIME is twice as large to prevent
* the problems with timer resolution.
* @brief Driver for the TI HDC1000 Humidity and Temperature Sensor
*
* The driver will initialize the sensor for best resolution (14 bit). Currently
* the driver doesn't use the heater. Temperature and humidity are acquired in
* sequence. The sensor is always in sleep mode.
*
* The temperature and humidity values can either be acquired using the
* simplified `hdc1000_read()` function, or the conversion can be triggered
* manually using the `hdc1000_trigger_conversion()` and `hdc1000_get_results()`
* functions sequentially. If using the second method, on must wait at least
* `HDC1000_CONVERSION_TIME` between triggering the conversion and reading the
* results.
*
* @note The driver does currently not support using the devices heating
* unit.
*
* @{
*
* @file
* @brief Interface definition for the HDC1000 sensor driver.
* @brief Interface definition for the HDC1000 sensor driver
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef HDC1000_H
#define HDC1000_H
#include <stdint.h>
#include <stdbool.h>
#include "periph/i2c.h"
#include "hdc1000_regs.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief Default I2C bus address of HDC1000 devices
*/
#ifndef HDC1000_I2C_ADDRESS
#define HDC1000_I2C_ADDRESS 0x43 /**< Default Device Address */
#endif
#ifndef HDC1000_CONVERSION_TIME
#define HDC1000_CONVERSION_TIME 26000 /**< Default Conversion Time */
#define HDC1000_I2C_ADDRESS (0x43)
#endif
/**
* @brief Device descriptor for HDC1000 sensors.
* @brief Typical conversion time needed to acquire new values [in us]
*
* @note This time value is chosen twice as large as needed for two 14-bit
* conversions (worst case) to allow for timer imprecision:
* (convert temp + convert hum) * 2 -> (6.5ms + 6.5ms) * 2 := 26ms.
*/
#ifndef HDC1000_CONVERSION_TIME
#define HDC1000_CONVERSION_TIME (26000)
#endif
/**
* @brief HDC1000 specific return values
*/
enum {
HDC1000_OK = 0, /**< everything went as expected */
HDC1000_NODEV = -1, /**< no HDC1000 device found on the bus */
HDC1000_NOBUS = -2, /**< errors while initializing the I2C bus */
};
/**
* @brief Possible resolution values
*/
typedef enum {
HDC1000_11BIT = (HDC1000_TRES11 | HDC1000_HRES11), /**< 11-bit conversion */
HDC1000_14BIT = (HDC1000_TRES14 | HDC1000_HRES14) /**< 14-bit conversion */
} hdc1000_res_t;
/**
* @brief Parameters needed for device initialization
*/
typedef struct {
i2c_t i2c; /**< I2C device the sensor is connected to */
uint8_t addr; /**< the sensor's slave address on the I2C bus */
bool initialized; /**< sensor status, true if sensor is initialized */
i2c_t i2c; /**< bus the device is connected to */
uint8_t addr; /**< address on that bus */
hdc1000_res_t res; /**< resolution used for sampling temp and hum */
} hdc1000_params_t;
/**
* @brief Device descriptor for HDC1000 sensors
*/
typedef struct {
hdc1000_params_t p; /**< Configuration parameters */
} hdc1000_t;
/**
* @brief HDC1000 sensor test.
* This function looks for Manufacturer ID of the HDC1000 sensor.
*
* @param[in] dev device descriptor of sensor
*
* @return 0 on success
* @return -1 on error
*/
int hdc1000_test(hdc1000_t *dev);
/**
* @brief Initialise the HDC1000 sensor driver.
* 14 bit resolution, heater off, temperature and humidity
* are acquired in sequence.
* @brief Initialize the given HDC1000 device
*
* @param[out] dev device descriptor of sensor to initialize
* @param[in] i2c I2C bus the sensor is connected to
* @param[in] address sensor's I2C slave address
* @param[in] params configuration parameters
*
* @return 0 on success
* @return -1 if initialization of I2C bus failed
* @return -2 if sensor test failed
* @return -3 if sensor configuration failed
* @return HDC1000_OK on success
* @return HDC1000_NOBUS if initialization of I2C bus fails
* @return HDC1000_NODEV if no HDC1000 device found on bus
*/
int hdc1000_init(hdc1000_t *dev, i2c_t i2c, uint8_t address);
int hdc1000_init(hdc1000_t *dev, const hdc1000_params_t *params);
/**
* @brief Reset the HDC1000 sensor. After that sensor should be reinitialized.
* @brief Trigger a new conversion
*
* @param[out] dev device descriptor of sensor to reset
*
* @return 0 on success
* @return -1 on error
*/
int hdc1000_reset(hdc1000_t *dev);
/**
* @brief Trigger the measurements.
* Conversion Time by 14 bit resolution is 6.50ms.
* After the conversion is triggered, one has to wait
* @ref HDC1000_CONVERSION_TIME us until the results can be read using
* @ref hdc1000_reg_results().
*
* @param[in] dev device descriptor of sensor
*
* @return 0 on success
* @return -1 on error
*/
int hdc1000_startmeasure(hdc1000_t *dev);
void hdc1000_trigger_conversion(hdc1000_t *dev);
/**
* @brief Read sensor's data.
* @brief Read conversion results for temperature and humidity
*
* @param[in] dev device descriptor of sensor
* @param[out] rawtemp raw temperature value
* @param[out] rawhum raw humidity value
*
* @return 0 on success
* @return -1 on error
* @param[out] temp temperature [in 100 * degree centigrade]
* @param[out] hum humidity [in 100 * percent relative]
*/
int hdc1000_read(hdc1000_t *dev, uint16_t *rawtemp, uint16_t *rawhum);
void hdc1000_get_results(hdc1000_t *dev, int16_t *temp, int16_t *hum);
/**
* @brief Convert raw sensor values to temperature and humidity.
* @brief Convenience function for reading temperature and humidity
*
* @param[in] rawtemp raw temperature value
* @param[in] rawhum raw humidity value
* @param[out] temp converted temperature*100
* @param[out] hum converted humidity*100
* This function will trigger a new conversion, wait for the conversion to be
* finished and the get the results from the device.
*
* @param[in] dev device descriptor of sensor
* @param[out] temp temperature [in 100 * degree centigrade]
* @param[out] hum humidity [in 100 * percent relative]
*/
void hdc1000_convert(uint16_t rawtemp, uint16_t rawhum, int *temp, int *hum);
void hdc1000_read(hdc1000_t *dev, int16_t *temp, int16_t *hum);
#ifdef __cplusplus
}