1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00

cpu/nrf5x: reworked and fixed UART driver

This commit is contained in:
Hauke Petersen 2019-01-25 11:41:21 +01:00 committed by Alexandre Abadie
parent 72f3f7d4f1
commit 93e7d88f75
No known key found for this signature in database
GPG Key ID: 1C919A403CAE1405
3 changed files with 140 additions and 106 deletions

View File

@ -50,7 +50,7 @@ static const uart_conf_t uart_config[] = {
}; };
#define UART_0_ISR (isr_uart0) #define UART_0_ISR (isr_uart0)
#define UART_1_ISR (isr_uart1) #define UART_1_ISR (isr_uarte1)
#define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0])) #define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0]))
/** @} */ /** @} */

View File

@ -43,9 +43,6 @@ extern "C" {
#define SPI_MOSISEL (dev(bus)->PSEL.MOSI) #define SPI_MOSISEL (dev(bus)->PSEL.MOSI)
#define SPI_MISOSEL (dev(bus)->PSEL.MISO) #define SPI_MISOSEL (dev(bus)->PSEL.MISO)
#ifndef CPU_MODEL_NRF52840XXAA #ifndef CPU_MODEL_NRF52840XXAA
#define UART_PIN_RTS (GPIO_UNDEF)
#define UART_PIN_CTS (GPIO_UNDEF)
#define UART_HWFLOWCTRL (0)
#define UART_IRQN (UARTE0_UART0_IRQn) #define UART_IRQN (UARTE0_UART0_IRQn)
#endif #endif
/** @} */ /** @} */

View File

@ -33,61 +33,54 @@
#include "periph/gpio.h" #include "periph/gpio.h"
#ifdef CPU_MODEL_NRF52840XXAA #ifdef CPU_MODEL_NRF52840XXAA
#define UART_INVALID (uart >= UART_NUMOF)
#define REG_BAUDRATE dev(uart)->BAUDRATE
#define REG_CONFIG dev(uart)->CONFIG
#define PSEL_RXD dev(uart)->PSEL.RXD #define PSEL_RXD dev(uart)->PSEL.RXD
#define PSEL_TXD dev(uart)->PSEL.TXD #define PSEL_TXD dev(uart)->PSEL.TXD
#define PSEL_RTS dev(uart)->PSEL.RTS
#define PSEL_CTS dev(uart)->PSEL.CTS
#define UART_IRQN uart_config[uart].irqn #define UART_IRQN uart_config[uart].irqn
#define UART_PIN_RX uart_config[uart].rx_pin #define UART_PIN_RX uart_config[uart].rx_pin
#define UART_PIN_TX uart_config[uart].tx_pin #define UART_PIN_TX uart_config[uart].tx_pin
#define UART_PIN_RTS uart_config[uart].rts_pin #define UART_PIN_RTS uart_config[uart].rts_pin
#define UART_PIN_CTS uart_config[uart].cts_pin #define UART_PIN_CTS uart_config[uart].cts_pin
#define UART_HWFLOWCTRL (uart_config[uart].rts_pin != GPIO_UNDEF && \ #define UART_HWFLOWCTRL (uart_config[uart].rts_pin != (uint8_t)GPIO_UNDEF && \
uart_config[uart].cts_pin != GPIO_UNDEF) uart_config[uart].cts_pin != (uint8_t)GPIO_UNDEF)
#define ISR_CTX isr_ctx[uart] #define ISR_CTX isr_ctx[uart]
/** /**
* @brief Allocate memory for the interrupt context * @brief Allocate memory for the interrupt context
*/ */
static uart_isr_ctx_t isr_ctx[UART_NUMOF]; static uart_isr_ctx_t isr_ctx[UART_NUMOF];
#else static uint8_t rx_buf[UART_NUMOF];
#define PSEL_RXD dev(uart)->PSELRXD
#define PSEL_TXD dev(uart)->PSELTXD
#define PSEL_RTS dev(uart)->PSELRTS
#define PSEL_CTS dev(uart)->PSELCTS
#define UART_0_ISR isr_uart0
#ifndef UART_PIN_RTS
#define UART_PIN_RTS GPIO_UNDEF
#endif
#ifndef UART_PIN_CTS
#define UART_PIN_CTS GPIO_UNDEF
#endif
#ifndef UART_HWFLOWCTRL
#define UART_HWFLOWCTRL 0
#endif
#define ISR_CTX isr_ctx
/**
* @brief Allocate memory for the interrupt context
*/
static uart_isr_ctx_t isr_ctx;
#endif
#ifdef CPU_MODEL_NRF52840XXAA
static inline NRF_UARTE_Type *dev(uart_t uart) static inline NRF_UARTE_Type *dev(uart_t uart)
{ {
return uart_config[uart].dev; return uart_config[uart].dev;
} }
static uint8_t rx_buf[UART_NUMOF];
#else #else /* nrf51 and nrf52832 etc */
static inline NRF_UART_Type *dev(uart_t uart)
{ #define UART_INVALID (uart != 0)
(void)uart; #define REG_BAUDRATE NRF_UART0->BAUDRATE
return NRF_UART0; #define REG_CONFIG NRF_UART0->CONFIG
} #define PSEL_RXD NRF_UART0->PSELRXD
#endif #define PSEL_TXD NRF_UART0->PSELTXD
#define UART_0_ISR isr_uart0
#define ISR_CTX isr_ctx
/**
* @brief Allocate memory for the interrupt context
*/
static uart_isr_ctx_t isr_ctx;
#endif /* CPU_MODEL_NRF52840XXAA */
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{ {
assert(uart < UART_NUMOF); if (UART_INVALID) {
return UART_NODEV;
}
/* remember callback addresses and argument */ /* remember callback addresses and argument */
ISR_CTX.rx_cb = rx_cb; ISR_CTX.rx_cb = rx_cb;
@ -95,11 +88,11 @@ int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
#ifdef CPU_FAM_NRF51 #ifdef CPU_FAM_NRF51
/* power on the UART device */ /* power on the UART device */
dev(uart)->POWER = 1; NRF_UART0->POWER = 1;
#endif #endif
/* reset configuration registers */ /* reset configuration registers */
dev(uart)->CONFIG = 0; REG_CONFIG = 0;
/* configure RX pin */ /* configure RX pin */
if (rx_cb) { if (rx_cb) {
@ -111,66 +104,81 @@ int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
gpio_init(UART_PIN_TX, GPIO_OUT); gpio_init(UART_PIN_TX, GPIO_OUT);
PSEL_TXD = UART_PIN_TX; PSEL_TXD = UART_PIN_TX;
#ifdef CPU_MODEL_NRF52840XXAA
/* enable HW-flow control if defined */ /* enable HW-flow control if defined */
if (UART_HWFLOWCTRL) { if (UART_HWFLOWCTRL) {
/* set pin mode for RTS and CTS pins */ /* set pin mode for RTS and CTS pins */
gpio_init(UART_PIN_RTS, GPIO_OUT); gpio_init(UART_PIN_RTS, GPIO_OUT);
gpio_init(UART_PIN_CTS, GPIO_IN); gpio_init(UART_PIN_CTS, GPIO_IN);
/* configure RTS and CTS pins to use */ /* configure RTS and CTS pins to use */
PSEL_RTS = UART_PIN_RTS; dev(uart)->PSEL.RTS = UART_PIN_RTS;
PSEL_CTS = UART_PIN_CTS; dev(uart)->PSEL.CTS = UART_PIN_CTS;
dev(uart)->CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */ REG_CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */
} else { } else {
PSEL_RTS = 0xffffffff; /* pin disconnected */ dev(uart)->PSEL.RTS = 0xffffffff; /* pin disconnected */
PSEL_CTS = 0xffffffff; /* pin disconnected */ dev(uart)->PSEL.CTS = 0xffffffff; /* pin disconnected */
} }
#else
#if UART_HWFLOWCTRL
/* set pin mode for RTS and CTS pins */
gpio_init(UART_PIN_RTS, GPIO_OUT);
gpio_init(UART_PIN_CTS, GPIO_IN);
/* configure RTS and CTS pins to use */
NRF_UART0->PSELRTS = UART_PIN_RTS;
NRF_UART0->PSELCTS = UART_PIN_CTS;
REG_CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */
#else
NRF_UART0->PSELRTS = 0xffffffff; /* pin disconnected */
NRF_UART0->PSELCTS = 0xffffffff; /* pin disconnected */
#endif
#endif
/* select baudrate */ /* select baudrate */
switch (baudrate) { switch (baudrate) {
case 1200: case 1200:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200;
break; break;
case 2400: case 2400:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400;
break; break;
case 4800: case 4800:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800;
break; break;
case 9600: case 9600:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600;
break; break;
case 14400: case 14400:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400;
break; break;
case 19200: case 19200:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200;
break; break;
case 28800: case 28800:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800;
break; break;
case 38400: case 38400:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400;
break; break;
case 57600: case 57600:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600;
break; break;
case 76800: case 76800:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800;
break; break;
case 115200: case 115200:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200;
break; break;
case 230400: case 230400:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400;
break; break;
case 250000: case 250000:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000;
break; break;
case 460800: case 460800:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800;
break; break;
case 921600: case 921600:
dev(uart)->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600; REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600;
break; break;
default: default:
return UART_NOBAUD; return UART_NOBAUD;
@ -179,33 +187,37 @@ int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
/* enable the UART device */ /* enable the UART device */
#ifdef CPU_MODEL_NRF52840XXAA #ifdef CPU_MODEL_NRF52840XXAA
dev(uart)->ENABLE = UARTE_ENABLE_ENABLE_Enabled; dev(uart)->ENABLE = UARTE_ENABLE_ENABLE_Enabled;
dev(uart)->RXD.MAXCNT = 1;
dev(uart)->RXD.PTR = (uint32_t)&rx_buf[uart];
#else #else
dev(uart)->ENABLE = UART_ENABLE_ENABLE_Enabled; NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled;
/* enable TX and RX*/ NRF_UART0->TASKS_STARTTX = 1;
dev(uart)->TASKS_STARTTX = 1;
#endif #endif
if (rx_cb) { if (rx_cb) {
#ifdef CPU_MODEL_NRF52840XXAA
dev(uart)->RXD.MAXCNT = 1;
dev(uart)->RXD.PTR = (uint32_t)&rx_buf[uart];
dev(uart)->INTENSET = UARTE_INTENSET_ENDRX_Msk;
dev(uart)->SHORTS |= UARTE_SHORTS_ENDRX_STARTRX_Msk;
dev(uart)->TASKS_STARTRX = 1; dev(uart)->TASKS_STARTRX = 1;
#else
NRF_UART0->INTENSET = UART_INTENSET_RXDRDY_Msk;
NRF_UART0->TASKS_STARTRX = 1;
#endif
/* enable global and receiving interrupt */ /* enable global and receiving interrupt */
NVIC_EnableIRQ(UART_IRQN); NVIC_EnableIRQ(UART_IRQN);
#ifdef CPU_MODEL_NRF52840XXAA
dev(uart)->INTENSET = UARTE_INTENSET_RXDRDY_Msk;
#else
dev(uart)->INTENSET = UART_INTENSET_RXDRDY_Msk;
#endif
} }
return UART_OK; return UART_OK;
} }
#ifdef CPU_MODEL_NRF52840XXAA /* nrf52840 (using EasyDMA) */
void uart_write(uart_t uart, const uint8_t *data, size_t len) void uart_write(uart_t uart, const uint8_t *data, size_t len)
{ {
assert(uart < UART_NUMOF); assert(uart < UART_NUMOF);
#ifdef CPU_MODEL_NRF52840XXAA /* nrf52840 uses EasyDMA to transmit data */
/* reset endtx flag */ /* reset endtx flag */
dev(uart)->EVENTS_ENDTX = 0; dev(uart)->EVENTS_ENDTX = 0;
/* set data to transfer to DMA TX pointer */ /* set data to transfer to DMA TX pointer */
@ -215,7 +227,46 @@ void uart_write(uart_t uart, const uint8_t *data, size_t len)
dev(uart)->TASKS_STARTTX = 1; dev(uart)->TASKS_STARTTX = 1;
/* wait for the end of transmission */ /* wait for the end of transmission */
while (dev(uart)->EVENTS_ENDTX == 0) {} while (dev(uart)->EVENTS_ENDTX == 0) {}
#else }
void uart_poweron(uart_t uart)
{
assert(uart < UART_NUMOF);
if (isr_ctx[uart].rx_cb) {
NRF_UART0->TASKS_STARTRX = 1;
}
}
void uart_poweroff(uart_t uart)
{
assert(uart < UART_NUMOF);
dev(uart)->TASKS_STOPRX = 1;
}
static inline void irq_handler(uart_t uart)
{
if (dev(uart)->EVENTS_ENDRX == 1) {
dev(uart)->EVENTS_ENDRX = 0;
/* make sure we actually received new data */
if (dev(uart)->RXD.AMOUNT == 0) {
return;
}
/* Process received byte */
isr_ctx[uart].rx_cb(isr_ctx[uart].arg, rx_buf[uart]);
}
cortexm_isr_end();
}
#else /* nrf51 and nrf52832 etc */
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
(void)uart;
for (size_t i = 0; i < len; i++) { for (size_t i = 0; i < len; i++) {
/* This section of the function is not thread safe: /* This section of the function is not thread safe:
- another thread may mess up with the uart at the same time. - another thread may mess up with the uart at the same time.
@ -226,61 +277,47 @@ void uart_write(uart_t uart, const uint8_t *data, size_t len)
thread may have not transmitted his data but will still exit the thread may have not transmitted his data but will still exit the
while loop. while loop.
*/ */
/* reset ready flag */ /* reset ready flag */
dev(uart)->EVENTS_TXDRDY = 0; NRF_UART0->EVENTS_TXDRDY = 0;
/* write data into transmit register */ /* write data into transmit register */
dev(uart)->TXD = data[i]; NRF_UART0->TXD = data[i];
/* wait for any transmission to be done */ /* wait for any transmission to be done */
while (dev(uart)->EVENTS_TXDRDY == 0) {} while (NRF_UART0->EVENTS_TXDRDY == 0) {}
} }
#endif
} }
void uart_poweron(uart_t uart) void uart_poweron(uart_t uart)
{ {
assert(uart < UART_NUMOF); (void)uart;
dev(uart)->TASKS_STARTRX = 1; NRF_UART0->TASKS_STARTTX = 1;
dev(uart)->TASKS_STARTTX = 1; if (isr_ctx.rx_cb) {
NRF_UART0->TASKS_STARTRX = 1;
}
} }
void uart_poweroff(uart_t uart) void uart_poweroff(uart_t uart)
{ {
assert(uart < UART_NUMOF);
#ifndef CPU_MODEL_NRF52840XXAA
dev(uart)->TASKS_SUSPEND;
#else
(void)uart; (void)uart;
#endif
NRF_UART0->TASKS_SUSPEND;
} }
static inline void irq_handler(uart_t uart) static inline void irq_handler(uart_t uart)
{ {
assert(uart < UART_NUMOF); (void)uart;
#ifdef CPU_MODEL_NRF52840XXAA /* nrf52840 uses EasyDMA to receive data */
if (dev(uart)->EVENTS_RXDRDY == 1) { if (NRF_UART0->EVENTS_RXDRDY == 1) {
dev(uart)->EVENTS_RXDRDY = 0; NRF_UART0->EVENTS_RXDRDY = 0;
/* RXRDY doesn't mean that received byte is in RAM uint8_t byte = (uint8_t)(NRF_UART0->RXD & 0xff);
so wait for ENDRX event */ isr_ctx.rx_cb(isr_ctx.arg, byte);
while(dev(uart)->EVENTS_ENDRX == 0) {}
dev(uart)->EVENTS_ENDRX = 0;
/* Process received byte */
ISR_CTX.rx_cb(ISR_CTX.arg, rx_buf[uart]);
/* Restart RX task */
dev(uart)->TASKS_STARTRX = 1;
} }
#else
if (dev(uart)->EVENTS_RXDRDY == 1) {
dev(uart)->EVENTS_RXDRDY = 0;
uint8_t byte = (uint8_t)(dev(uart)->RXD & 0xff);
ISR_CTX.rx_cb(ISR_CTX.arg, byte);
}
#endif
cortexm_isr_end(); cortexm_isr_end();
} }
#endif /* CPU_MODEL_NRF52840XXAA */
#ifdef UART_0_ISR #ifdef UART_0_ISR
void UART_0_ISR(void) void UART_0_ISR(void)
{ {