1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00

cpu: atmega2560: Initial import

This commit is contained in:
Hinnerk van Bruinehsen 2014-07-15 12:09:50 +02:00
parent a6b77b4745
commit 7b70f64d84
15 changed files with 1493 additions and 0 deletions

5
cpu/atmega2560/Makefile Normal file
View File

@ -0,0 +1,5 @@
# define the module that is build
MODULE = cpu
# add a list of subdirectories, that should also be build
DIRS = periph $(ATMEGA_COMMON)
include $(RIOTBASE)/Makefile.base

View File

@ -0,0 +1,28 @@
# this CPU implementation is using the new core/CPU interface
export CFLAGS += -DCOREIF_NG=1
# tell the build system that the CPU depends on the atmega common files
export USEMODULE += atmega_common
# define path to atmega common module, which is needed for this CPU
export ATMEGA_COMMON = $(RIOTCPU)/atmega_common/
# define the linker script to use for this CPU
#export LINKERSCRIPT = $(RIOTCPU)/$(CPU)/atmega2560_linkerscript.ld
# include CPU specific includes
export INCLUDES += -I$(RIOTCPU)/$(CPU)/include
# explicitly tell the linker to link the syscalls and startup code.
# Without this the interrupt vectors will not be linked correctly!
export UNDEF += $(BINDIR)cpu/startup.o
# export the peripheral drivers to be linked into the final binary
export USEMODULE += periph
# the uart implementation uses ringbuffer and therefore needs lib
export USEMODULE += lib
# CPU depends on the atmega common module, so include it
include $(ATMEGA_COMMON)Makefile.include

29
cpu/atmega2560/cpu.c Normal file
View File

@ -0,0 +1,29 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega2560
* @{
*
* @file cpu.c
* @brief Implementation of the CPU initialization
*
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
* @}
*/
#include "cpu.h"
/**
* @brief Initialize the CPU, set IRQ priorities
*/
void cpu_init(void)
{
/* Right now we need to do nothing here */
;
}

10
cpu/atmega2560/doc.txt Normal file
View File

@ -0,0 +1,10 @@
/**
* @defgroup cpu_atmega2560 Atmel ATmega2560
* @ingroup cpu
* @brief Implementation of Atmel's ATmega2560 MCU
*/
/**
* @defgroup cpu_atmega2560_definitions Atmel ATmega2560 Definitions
* @ingroup cpu_atmega2560
*/

View File

@ -0,0 +1,73 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega2560
* @{
*
* @file hwtimer_arch.c
* @brief Implementation of the kernels hwtimer interface
*
* The hardware timer implementation uses the ATmega2560 build-in system timer as back-end.
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include "arch/hwtimer_arch.h"
#include "board.h"
#include "periph/timer.h"
#include "thread.h"
void irq_handler(int channel);
void (*timeout_handler)(int);
void hwtimer_arch_init(void (*handler)(int), uint32_t fcpu)
{
timeout_handler = handler;
timer_init(HW_TIMER, 1, &irq_handler);
}
void hwtimer_arch_enable_interrupt(void)
{
timer_irq_enable(HW_TIMER);
}
void hwtimer_arch_disable_interrupt(void)
{
timer_irq_disable(HW_TIMER);
}
void hwtimer_arch_set(unsigned long offset, short timer)
{
timer_set(HW_TIMER, timer, offset);
}
void hwtimer_arch_set_absolute(unsigned long value, short timer)
{
timer_set_absolute(HW_TIMER, timer, value);
}
void hwtimer_arch_unset(short timer)
{
timer_clear(HW_TIMER, timer);
}
unsigned long hwtimer_arch_now(void)
{
return timer_read(HW_TIMER);
}
void irq_handler(int channel)
{
timeout_handler((short)(channel));
}

View File

@ -0,0 +1,52 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @{
*
* @file
* @brief Implementation specific CPU configuration options
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*/
#ifndef __CPU_CONF_H
#define __CPU_CONF_H
/**
* @name Kernel configuration
*
* Since printf seems to get memory allocated by the linker/avr-libc the stack
* size tested sucessfully even with pretty small stacks.k
* @{
*/
#define KERNEL_CONF_STACKSIZE_PRINTF (128)
#ifndef KERNEL_CONF_STACKSIZE_DEFAULT
#define KERNEL_CONF_STACKSIZE_DEFAULT (256)
#endif
#define KERNEL_CONF_STACKSIZE_IDLE (128)
/** @} */
/**
* @name UART0 buffer size definition for compatibility reasons
*
* TODO: remove once the remodeling of the uart0 driver is done
* @{
*/
#ifndef UART0_BUFSIZE
#define UART0_BUFSIZE (128)
#endif
/** @} */
#endif /* __CPU_CONF_H */
/** @} */

View File

@ -0,0 +1,32 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega2560
* @{
*
* @file
* @brief CPU specific hwtimer configuration options
*
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*/
#ifndef __HWTIMER_CPU_H
#define __HWTIMER_CPU_H
/**
* @name Hardware timer configuration
* @{
*/
#define HWTIMER_MAXTIMERS 3 /**< the CPU implementation supports 3 HW timers */
#define HWTIMER_SPEED 1000000 /**< the HW timer runs with 1MHz */
#define HWTIMER_MAXTICKS (0xFFFF) /**< 16-bit timer */
/** @} */
#endif /* __HWTIMER_CPU_H */
/** @} */

35
cpu/atmega2560/io_arch.c Normal file
View File

@ -0,0 +1,35 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega2560
* @{
*
* @file io_arch.c
* @brief Implementation of the kernel's architecture dependent IO interface
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include <stdio.h>
#include "arch/io_arch.h"
int io_arch_puts(char *data, int size)
{
int i = 0;
for (; i < size; i++) {
putchar(data[i]);
}
return i;
}

53
cpu/atmega2560/lpm_arch.c Normal file
View File

@ -0,0 +1,53 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega2560
* @{
*
* @file lpm_arch.c
* @brief Implementation of the kernels power management interface
*
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include "arch/lpm_arch.h"
void lpm_arch_init(void)
{
/* TODO */
}
enum lpm_mode lpm_arch_set(enum lpm_mode target)
{
/* TODO */
return 0;
}
enum lpm_mode lpm_arch_get(void)
{
/* TODO */
return 0;
}
void lpm_arch_awake(void)
{
/* TODO */
}
void lpm_arch_begin_awake(void)
{
/* TODO */
}
void lpm_arch_end_awake(void)
{
/* TODO */
}

View File

@ -0,0 +1,2 @@
MODULE = periph
include $(RIOTBASE)/Makefile.base

View File

@ -0,0 +1,71 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file gpio.c
* @brief Low-level GPIO driver implementation
*
* @author Hauke Petersen <mail@haukepetersen.de>
*
* @}
*/
/*
* TODO: Implement GPIO interface
*/
#include "cpu.h"
#include "periph/gpio.h"
#include "periph_conf.h"
typedef struct {
void (*cb)(void);
} gpio_state_t;
/*static gpio_state_t config[GPIO_NUMOF]; */
int gpio_init_out(gpio_t dev, gpio_pp_t pushpull)
{
return -1;
}
int gpio_init_in(gpio_t dev, gpio_pp_t pushpull)
{
return -1;
}
int gpio_init_int(gpio_t dev, gpio_pp_t pushpull, gpio_flank_t flank, gpio_cb_t cb, void *arg)
{
return -1;
}
int gpio_read(gpio_t dev)
{
return -1;
}
void gpio_set(gpio_t dev)
{
}
void gpio_clear(gpio_t dev)
{
}
void gpio_toggle(gpio_t dev)
{
}
void gpio_write(gpio_t dev, int value)
{
}

View File

@ -0,0 +1,672 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file timer.c
* @brief Low-level timer driver implementation for the ATmega2560 CPU
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include <stdlib.h>
#include <stdio.h>
#include <avr/interrupt.h>
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
static inline int __set_timer(tim_t dev,
int channel,
unsigned int timeout,
unsigned int interval
);
#define IRQ_DISABLED 0x00
typedef struct {
void (*cb)(int);
volatile uint8_t ctr_a;
volatile uint8_t ctr_b;
volatile uint8_t ctr_c;
uint8_t limit;
uint16_t timeout_a;
uint16_t timeout_b;
uint16_t timeout_c;
} timer_conf_t;
/**
* @brief Timer state memory
*/
timer_conf_t config[TIMER_NUMOF];
/**
* @brief Setup the given timer
*
*/
int timer_init(tim_t dev, unsigned int ticks_per_us, void (*callback)(int))
{
/* reject impossible ticks_per_us values */
if ((ticks_per_us > 16) && (ticks_per_us == 0)) {
return -1;
}
config[dev].limit = 16 / ticks_per_us;
config[dev].ctr_a = 0x00;
config[dev].ctr_b = 0x00;
config[dev].ctr_c = 0x00;
/* select the timer and enable the timer specific peripheral clocks */
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_COUNTER = 0;
TIMER0_CONTROL_B |= TIMER0_FREQ_16MHZ;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_COUNTER = 0;
TIMER1_CONTROL_B |= TIMER1_FREQ_16MHZ;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER2_COUNTER = 0;
TIMER2_CONTROL_B |= TIMER2_FREQ_16MHZ;
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
/* save callback */
config[dev].cb = callback;
return 0;
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
return __set_timer(dev, channel, timer_read(dev) + timeout, timeout);
}
int timer_set_absolute(tim_t dev, int channel, unsigned int timeout)
{
return __set_timer(dev, channel, timeout, timeout);
}
int timer_clear(tim_t dev, int channel)
{
switch (dev) {
#if TIMER_0_DIS
case TIMER_0:
switch (channel) {
case 0:
TIMER0_IRQ_FLAG_REG &= ~(1 << TIMER0_COMP_A_FLAG);
config[dev].timeout_a = IRQ_DISABLED;
break;
case 1:
TIMER0_IRQ_FLAG_REG &= ~(1 << TIMER0_COMP_B_FLAG);
config[dev].timeout_b = IRQ_DISABLED;
break;
case 2:
TIMER0_IRQ_FLAG_REG &= ~(1 << TIMER0_COMP_C_FLAG);
config[dev].timeout_c = IRQ_DISABLED;
break;
default:
return -1;
}
break;
#endif
#if TIMER_1_DIS
case TIMER_1:
switch (channel) {
case 0:
TIMER1_IRQ_FLAG_REG &= ~(1 << TIMER1_COMP_A_FLAG);
config[dev].timeout_a = IRQ_DISABLED;
break;
case 1:
TIMER1_IRQ_FLAG_REG &= ~(1 << TIMER1_COMP_B_FLAG);
config[dev].timeout_b = IRQ_DISABLED;
break;
case 2:
TIMER1_IRQ_FLAG_REG &= ~(1 << TIMER1_COMP_C_FLAG);
config[dev].timeout_c = IRQ_DISABLED;
break;
default:
return -1;
break;
}
break;
#endif
#if TIMER_2_DIS
case TIMER_2:
switch (channel) {
case 0:
TIMER2_IRQ_FLAG_REG &= ~(1 << TIMER2_COMP_A_FLAG);
config[dev].timeout_a = IRQ_DISABLED;
break;
case 1:
TIMER2_IRQ_FLAG_REG &= ~(1 << TIMER2_COMP_B_FLAG);
config[dev].timeout_b = IRQ_DISABLED;
break;
case 2:
TIMER2_IRQ_FLAG_REG &= ~(1 << TIMER2_COMP_C_FLAG);
config[dev].timeout_c = IRQ_DISABLED;
break;
default:
return -1;
break;
}
break;
#endif
case TIMER_UNDEFINED:
default:
return -1;
}
timer_irq_disable(dev);
return 1;
}
unsigned int timer_read(tim_t dev)
{
uint16_t value;
/*
* Disabling interrupts globally because read from 16 Bit register can
* otherwise be messed up
*/
disableIRQ();
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
value = TIMER0_COUNTER;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
value = TIMER1_COUNTER;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
value = TIMER2_COUNTER;
break;
#endif
case TIMER_UNDEFINED:
default:
value = 0;
enableIRQ();
}
enableIRQ();
return value;
}
void timer_stop(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_CONTROL_B = TIMER0_FREQ_DISABLE;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_CONTROL_B = TIMER1_FREQ_DISABLE;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER2_CONTROL_B = TIMER2_FREQ_DISABLE;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_start(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_CONTROL_B |= TIMER0_FREQ_16MHZ;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_CONTROL_B |= TIMER1_FREQ_16MHZ;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER1_CONTROL_B |= TIMER1_FREQ_16MHZ;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_irq_enable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
if (config[dev].timeout_a != IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG |= (1 << TIMER0_COMP_A_EN);
}
if (config[dev].timeout_b != IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG |= (1 << TIMER0_COMP_B_EN);
}
if (config[dev].timeout_c != IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG |= (1 << TIMER0_COMP_C_EN);
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
if (config[dev].timeout_a != IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG |= (1 << TIMER1_COMP_A_EN);
}
if (config[dev].timeout_b != IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG |= (1 << TIMER1_COMP_B_EN);
}
if (config[dev].timeout_c != IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG |= (1 << TIMER1_COMP_C_EN);
}
break;
#endif
#if TIMER_2_EN
case TIMER_2:
if (config[dev].timeout_a != IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG |= (1 << TIMER2_COMP_A_EN);
}
if (config[dev].timeout_b != IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG |= (1 << TIMER2_COMP_B_EN);
}
if (config[dev].timeout_c != IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG |= (1 << TIMER2_COMP_C_EN);
}
break;
#endif
case TIMER_UNDEFINED:
break;
}
enableIRQ();
}
void timer_irq_disable(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
if (config[dev].timeout_a == IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG &= ~(1 << TIMER0_COMP_A_EN);
}
if (config[dev].timeout_b == IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG &= ~(1 << TIMER0_COMP_B_EN);
}
if (config[dev].timeout_c == IRQ_DISABLED) {
TIMER0_IRQ_MASK_REG &= ~(1 << TIMER0_COMP_C_EN);
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
if (config[dev].timeout_a == IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG &= ~(1 << TIMER1_COMP_A_EN);
}
if (config[dev].timeout_b == IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG &= ~(1 << TIMER1_COMP_B_EN);
}
if (config[dev].timeout_c == IRQ_DISABLED) {
TIMER1_IRQ_MASK_REG &= ~(1 << TIMER1_COMP_C_EN);
}
break;
#endif
#if TIMER_2_EN
case TIMER_2:
if (config[dev].timeout_a == IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG &= ~(1 << TIMER2_COMP_A_EN);
}
if (config[dev].timeout_b == IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG &= ~(1 << TIMER2_COMP_B_EN);
}
if (config[dev].timeout_c == IRQ_DISABLED) {
TIMER2_IRQ_MASK_REG &= ~(1 << TIMER2_COMP_C_EN);
}
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
void timer_reset(tim_t dev)
{
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
TIMER0_COUNTER = 0;
break;
#endif
#if TIMER_1_EN
case TIMER_1:
TIMER1_COUNTER = 0;
break;
#endif
#if TIMER_2_EN
case TIMER_2:
TIMER2_COUNTER = 0;
break;
#endif
case TIMER_UNDEFINED:
break;
}
}
inline int __set_timer(tim_t dev, int channel, unsigned int timeout, unsigned int interval)
{
/*
* Disabling interrupts globally because write to 16 Bit register can
* otherwise be messed up
*/
disableIRQ();
switch (dev) {
#if TIMER_0_EN
case TIMER_0:
switch (channel) {
case 0:
TIMER0_COMP_A = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_a = interval;
break;
case 1:
TIMER0_COMP_B = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_b = interval;
break;
case 2:
TIMER0_COMP_C = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_c = interval;
break;
default:
enableIRQ();
return -1;
}
break;
#endif
#if TIMER_1_EN
case TIMER_1:
switch (channel) {
case 0:
TIMER1_COMP_A = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_a = interval;
break;
case 1:
TIMER1_COMP_B = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_b = interval;
break;
case 2:
TIMER1_COMP_C = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_c = interval;
break;
default:
enableIRQ();
return -1;
}
break;
#endif
#if TIMER_2_EN
case TIMER_2:
switch (channel) {
case 0:
TIMER2_COMP_A = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_a = interval;
break;
case 1:
TIMER2_COMP_B = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_b = interval;
break;
case 2:
TIMER2_COMP_C = (uint16_t) timeout * config[dev].limit;
config[dev].timeout_c = interval;
break;
default:
enableIRQ();
return -1;
}
break;
#endif
case TIMER_UNDEFINED:
default:
enableIRQ();
return -1;
}
/* enable interrupts for given timer */
timer_irq_enable(dev);
enableIRQ();
return 1;
}
#if TIMER_0_EN
ISR(TIMER0_COMPA_ISR, ISR_BLOCK)
{
config[TIMER_0].ctr_a++;
if (config[TIMER_0].ctr_a >= config[TIMER_0].limit) {
config[TIMER_0].limit = 0;
config[TIMER_0].cb(0);
TIMER0_COMP_A = TIMER0_COMP_A + config[TIMER_0].timeout_a * config[TIMER_0].limit;
}
}
ISR(TIMER0_COMPB_ISR, ISR_BLOCK)
{
config[TIMER_0].ctr_b++;
if (config[TIMER_0].ctr_b >= config[TIMER_0].limit) {
config[TIMER_0].limit = 0;
config[TIMER_0].cb(1);
TIMER0_COMP_B = TIMER0_COMP_B + config[TIMER_0].timeout_b * config[TIMER_0].limit;
}
}
ISR(TIMER0_COMPC_ISR, ISR_BLOCK)
{
config[TIMER_0].ctr_c++;
if (config[TIMER_0].ctr_c >= config[TIMER_0].limit) {
config[TIMER_0].limit = 0;
config[TIMER_0].cb(2);
TIMER0_COMP_C = TIMER0_COMP_C + config[TIMER_0].timeout_c * config[TIMER_0].limit;
}
}
#endif /* TIMER_0_EN */
#if TIMER_1_EN
ISR(TIMER1_COMPA_ISR, ISR_BLOCK)
{
config[TIMER_1].ctr_a++;
if (config[TIMER_1].ctr_a >= config[TIMER_1].limit) {
config[TIMER_1].limit = 0;
config[TIMER_1].cb(0);
TIMER1_COMP_A = TIMER1_COMP_A + config[TIMER_1].timeout_a * config[TIMER_1].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER1_COMPB_ISR, ISR_BLOCK)
{
config[TIMER_1].ctr_b++;
if (config[TIMER_1].ctr_b >= config[TIMER_1].limit) {
config[TIMER_1].limit = 0;
config[TIMER_1].cb(1);
TIMER1_COMP_B = TIMER1_COMP_B + config[TIMER_1].timeout_b * config[TIMER_1].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER1_COMPC_ISR, ISR_BLOCK)
{
config[TIMER_1].ctr_c++;
if (config[TIMER_1].ctr_c >= config[TIMER_1].limit) {
config[TIMER_1].limit = 0;
config[TIMER_1].cb(2);
TIMER1_COMP_C = TIMER1_COMP_C + config[TIMER_1].timeout_c * config[TIMER_1].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_1_EN */
#if TIMER_2_EN
ISR(TIMER2_COMPA_ISR, ISR_BLOCK)
{
config[TIMER_2].ctr_a++;
if (config[TIMER_2].ctr_a >= config[TIMER_2].limit) {
config[TIMER_2].limit = 0;
config[TIMER_2].cb(0);
TIMER2_COMP_A = TIMER2_COMP_A + config[TIMER_2].timeout_a * config[TIMER_2].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER2_COMPB_ISR, ISR_BLOCK)
{
config[TIMER_2].ctr_b++;
if (config[TIMER_2].ctr_b >= config[TIMER_2].limit) {
config[TIMER_2].limit = 0;
config[TIMER_2].cb(1);
TIMER2_COMP_B = TIMER2_COMP_B + config[TIMER_2].timeout_b * config[TIMER_2].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
ISR(TIMER2_COMPC_ISR, ISR_BLOCK)
{
config[TIMER_2].ctr_c++;
if (config[TIMER_2].ctr_c >= config[TIMER_2].limit) {
config[TIMER_2].limit = 0;
config[TIMER_2].cb(2);
TIMER2_COMP_C = TIMER2_COMP_C + config[TIMER_2].timeout_c * config[TIMER_2].limit;
}
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* TIMER_2_EN */

View File

@ -0,0 +1,317 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup driver_periph
* @{
*
* @file uart.c
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include "board.h"
#include "cpu.h"
#include "thread.h"
#include "sched.h"
#include "periph/uart.h"
#include "periph_conf.h"
/**
* @brief Each UART device has to store two callbacks.
*/
typedef struct {
uart_rx_cb_t rx_cb;
uart_tx_cb_t tx_cb;
void *arg;
} uart_conf_t;
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_conf_t config[UART_NUMOF];
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, uart_tx_cb_t tx_cb, void *arg)
{
/* initialize basic functionality */
int res = uart_init_blocking(uart, baudrate);
if (res != 0) {
return res;
}
/* register callbacks */
config[uart].rx_cb = rx_cb;
config[uart].tx_cb = tx_cb;
config[uart].arg = arg;
/* configure interrupts and enable RX interrupt */
switch (uart) {
#if UART_0_EN
case UART_0:
UART0_RX_IRQ_EN;
break;
#endif /* UART_0_EN */
#if UART_1_EN
case UART_1:
UART1_RX_IRQ_EN;
break;
#endif /* UART_1_EN */
#if UART_2_EN
case UART_2:
UART2_RX_IRQ_EN;
break;
#endif /* UART_2_EN */
#if UART_3_EN
case UART_3:
UART3_RX_IRQ_EN;
break;
#endif /* UART_3_EN */
}
return 0;
}
int uart_init_blocking(uart_t uart, uint32_t baudrate)
{
uint16_t clock_divider = F_CPU / (16 * baudrate);
switch (uart) {
#if UART_0_EN
case UART_0:
/* enable RX and TX */
UART0_RX_TX_EN;
/* use 8 Bit characters */
UART0_SET_8BIT_SIZE;
/* set clock divider */
UART0_BAUD_RATE_L = clock_divider;
UART0_BAUD_RATE_H = (clock_divider >> 8);
break;
#endif /* UART_0 */
#if UART_1_EN
case UART_1:
/* enable RX and TX */
UART1_RX_TX_EN;
/* use 8 Bit characters */
UART1_SET_8BIT_SIZE;
/* set clock divider */
UART1_BAUD_RATE_L = clock_divider;
UART1_BAUD_RATE_H = (clock_divider >> 8);
break;
#endif /* UART_1 */
#if UART_2_EN
case UART_2:
/* enable RX and TX */
UART2_RX_TX_EN;
/* use 8 Bit characters */
UART2_SET_8BIT_SIZE;
/* set clock divider */
UART2_BAUD_RATE_L = clock_divider;
UART2_BAUD_RATE_H = (clock_divider >> 8);
break;
#endif /* UART_2 */
#if UART_3_EN
case UART_3:
/* enable RX and TX */
UART3_RX_TX_EN;
/* use 8 Bit characters */
UART3_SET_8BIT_SIZE;
/* set clock divider */
UART3_BAUD_RATE_L = clock_divider;
UART3_BAUD_RATE_H = (clock_divider >> 8);
break;
#endif /* UART_3 */
}
return 0;
}
void uart_tx_begin(uart_t uart)
{
}
void uart_tx_end(uart_t uart)
{
}
int uart_write(uart_t uart, char data)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART0_DATA_REGISTER = data;
break;
#endif /* UART_0_EN */
#if UART_1_EN
case UART_1:
UART1_DATA_REGISTER = data;
break;
#endif /* UART_1_EN */
#if UART_2_EN
case UART_2:
UART2_DATA_REGISTER = data;
break;
#endif /* UART_2_EN */
#if UART_3_EN
case UART_3:
UART3_DATA_REGISTER = data;
break;
#endif /* UART_3_EN */
}
return 1;
}
int uart_read_blocking(uart_t uart, char *data)
{
switch (uart) {
#if UART_0_EN
case UART_0:
while (!UART0_RECEIVED_DATA);
*data = (char) UART0_DATA_REGISTER;
break;
#endif /* UART_0_EN */
#if UART_1_EN
case UART_1:
while (!UART1_RECEIVED_DATA);
*data = (char) UART1_DATA_REGISTER;
break;
#endif /* UART_1_EN */
#if UART_2_EN
case UART_2:
while (!UART2_RECEIVED_DATA);
*data = (char) UART2_DATA_REGISTER;
break;
#endif /* UART_2_EN */
#if UART_3_EN
case UART_3:
while (!UART3_RECEIVED_DATA);
*data = (char) UART3_DATA_REGISTER;
break;
#endif /* UART_3_EN */
}
return 1;
}
int uart_write_blocking(uart_t uart, char data)
{
switch (uart) {
#if UART_0_EN
case UART_0:
while (!UART0_DTREG_EMPTY);
UART0_DATA_REGISTER = data;
break;
#endif /* UART_0_EN */
#if UART_1_EN
case UART_1:
while (!UART1_DTREG_EMPTY);
UART1_DATA_REGISTER = data;
break;
#endif /* UART_1_EN */
#if UART_2_EN
case UART_2:
while (!UART2_DTREG_EMPTY);
UART2_DATA_REGISTER = data;
break;
#endif /* UART_2_EN */
#if UART_3_EN
case UART_3:
while (!UART3_DTREG_EMPTY);
UART3_DATA_REGISTER = data;
break;
#endif /* UART_3_EN */
}
return 1;
}
#if UART_0_EN
ISR(USART0_RX_vect, ISR_BLOCK)
{
config[UART_0].rx_cb(config[UART_0].arg, UART0_DATA_REGISTER);
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* UART_0_EN */
#if UART_1_EN
ISR(USART1_RX_vect, ISR_BLOCK)
{
config[UART_1].rx_cb(config[UART_1].arg, UART0_DATA_REGISTER);
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* UART_1_EN */
#if UART_1_EN
ISR(USART2_RX_vect, ISR_BLOCK)
{
config[UART_2].rx_cb(config[UART_2].arg, UART0_DATA_REGISTER);
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* UART_2_EN */
#if UART_2_EN
ISR(USART2_RX_vect, ISR_BLOCK)
{
config[UART_3].rx_cb(config[UART_3].arg, UART0_DATA_REGISTER);
if (sched_context_switch_request) {
thread_yield();
}
}
#endif /* UART_3_EN */

View File

@ -0,0 +1,40 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega2560
* @{
*
* @file reboot_arch.c
* @brief Implementation of the kernels reboot interface
*
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include <stdio.h>
#include <avr/wdt.h>
#include "arch/reboot_arch.h"
#include "cpu.h"
int reboot_arch(int mode)
{
printf("Going into reboot, mode %i\n", mode);
/*
* Since the AVR doesn't support a real software reset, we set the Watchdog
* Timer on a 250ms timeout. Consider this a kludge.
*/
wdt_enable(WDTO_250MS);
return 0;
}

74
cpu/atmega2560/startup.c Normal file
View File

@ -0,0 +1,74 @@
/*
* Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_atmega2560
* @{
*
* @file startup.c
* @brief Startup code and interrupt vector definition
*
* @author Hinnerk van Bruinehsen <h.v.bruinehsen@fu-berlin.de>
*
* @}
*/
#include <stdint.h>
#include <avr/interrupt.h>
#include <avr/io.h>
/* For Catchall-Loop */
#include "board.h"
#include <util/delay.h>
#include <stdio.h>
/**
* @brief functions for initializing the board, std-lib and kernel
*/
extern void board_init(void);
extern void kernel_init(void);
extern void __libc_init_array(void);
/**
* @brief This pair of functions hook circumvent the call to main
*
* avr-libc normally uses the .init9 section for a call to main. This call
* seems to be not replaceable without hacking inside the library. We
* circumvent the call to main by using section .init7 to call the function
* reset_handler which therefore is the real entry point and section .init8
* which should never be reached but just in case jumps to exit.
* This way there should be no way to call main directly.
*/
void init7_ovr(void) __attribute__((naked)) __attribute__((section(".init7")));
void init8_ovr(void) __attribute__((naked)) __attribute__((section(".init8")));
void init7_ovr(void)
{
asm("call reset_handler");
}
void init8_ovr(void)
{
asm("jmp exit");
}
/**
* @brief This function is the entry point after a system reset
*
* After a system reset, the following steps are necessary and carried out:
* 1. initialize the board (sync clock, setup std-IO)
* 2. initialize and start RIOTs kernel
*/
void reset_handler(void)
{
/* initialize the board and startup the kernel */
board_init();
/* startup the kernel */
kernel_init();
}