1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00

boards/slstk3701a: add Silabs EFM32 Giant Gecko GG11 Starter Kit

This commit is contained in:
Gunar Schorcht 2023-09-18 09:13:53 +02:00
parent b34f48c233
commit 77769905cd
10 changed files with 863 additions and 0 deletions

32
boards/slstk3701a/Kconfig Normal file
View File

@ -0,0 +1,32 @@
# Copyright (c) 2020 HAW Hamburg
#
# This file is subject to the terms and conditions of the GNU Lesser
# General Public License v2.1. See the file LICENSE in the top level
# directory for more details.
config BOARD
default "slstk3701a" if BOARD_SLSTK3701A
config BOARD_SLSTK3701A
bool
default y
select BOARD_COMMON_SILABS
select CPU_MODEL_EFM32GG11B820F2048GL192
select HAS_PERIPH_ADC
select HAS_PERIPH_DAC
select HAS_PERIPH_I2C
select HAS_PERIPH_RTC
select HAS_PERIPH_RTT
select HAS_PERIPH_SPI
select HAS_PERIPH_TIMER
select HAS_PERIPH_UART
select HAS_PERIPH_UART_MODECFG
select HAS_PERIPH_USBDEV
select HAVE_SAUL_GPIO
select HAVE_SI7021
select MODULE_SILABS_AEM if TEST_KCONFIG
select MODULE_SILABS_BC if TEST_KCONFIG
source "$(RIOTBOARD)/common/silabs/Kconfig"

View File

@ -0,0 +1,5 @@
MODULE = board
DIRS = $(RIOTBOARD)/common/silabs
include $(RIOTBASE)/Makefile.base

View File

@ -0,0 +1,13 @@
ifneq (,$(filter saul_default,$(USEMODULE)))
USEMODULE += efm32_coretemp
USEMODULE += saul_gpio
USEMODULE += si7021
endif
# add board common drivers
USEMODULE += boards_common_silabs
USEMODULE += silabs_aem
USEMODULE += silabs_bc
# include board common dependencies
include $(RIOTBOARD)/common/silabs/Makefile.dep

View File

@ -0,0 +1,16 @@
CPU = efm32
CPU_FAM = efm32gg11b
CPU_MODEL = efm32gg11b820f2048gl192
# Put defined MCU peripherals here (in alphabetical order)
FEATURES_PROVIDED += periph_adc
FEATURES_PROVIDED += periph_dac
FEATURES_PROVIDED += periph_i2c
FEATURES_PROVIDED += periph_rtc
FEATURES_PROVIDED += periph_rtt
FEATURES_PROVIDED += periph_spi
FEATURES_PROVIDED += periph_timer
FEATURES_PROVIDED += periph_uart periph_uart_modecfg
FEATURES_PROVIDED += periph_usbdev
include $(RIOTBOARD)/common/silabs/Makefile.features

View File

@ -0,0 +1,12 @@
# set default port depending on operating system
PORT_LINUX ?= /dev/ttyACM0
PORT_DARWIN ?= $(firstword $(sort $(wildcard /dev/tty.usbmodem*)))
# setup serial terminal
include $(RIOTMAKE)/tools/serial.inc.mk
# setup JLink for flashing
JLINK_PRE_FLASH = r
# include board common
include $(RIOTBOARD)/common/silabs/Makefile.include

31
boards/slstk3701a/board.c Normal file
View File

@ -0,0 +1,31 @@
/*
* Copyright (C) 2015-2020 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup boards_slstk3701a
* @{
*
* @file
* @brief Board specific implementations SLSTK3701A board
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Bas Stottelaar <basstottelaar@gmail.com>
*
* @}
*/
#include "board.h"
#include "board_common.h"
void board_init(void)
{
#ifndef RIOTBOOT
/* perform common board initialization */
board_common_init();
#endif
}

288
boards/slstk3701a/doc.txt Normal file
View File

@ -0,0 +1,288 @@
/**
* @defgroup boards_slstk3701a Silicon Labs SLSTK3701A starter kit
* @ingroup boards
* @brief Support for Silicon Labs SLSTK3701A starter kit
## Overview
Silicon Labs EFM32 Giant Gecko GG11 Starter Kit is equipped with the EFM32 microcontroller.
It is specifically designed for low-power applications, having energy-saving
peripherals, different energy modes and short wake-up times.
The starter kit is equipped with an Advanced Energy Monitor. This allows you to
actively measure the power consumption of your hardware and code, in real-time.
## Hardware
### MCU
| MCU | EFM32GG11B820F2048GL192 |
|-----------------|------------------------------------------------------|
| Family | ARM Cortex-M4F |
| Vendor | Silicon Labs |
| Vendor Family | EFM32 Giant Gecko 11B |
| RAM | 512.0 KiB |
| Flash | 2048.0 KiB |
| EEPROM | no |
| Frequency | up to 50 MHz |
| FPU | yes |
| MPU | yes |
| DMA | 24 channels |
| Timers | 4 x 32-bit + 7 x 16-bit + 1 x 16-bit (low power) |
| ADCs | 2 x 12-bit ADC (1 Msample/s) |
| DACs | 2 x 12-bit VDAC (500 ksamples/s), 1 x IDAC |
| I2Cs | 3 x |
| SPIs | 4 x USART |
| UARTs | 4 x USART, 1 x LEUART |
| USB | 1 x Low Energy Full-Speed USB 2.0 |
| Ethernet | Ethernet MAC 10/100 Mbps |
| Vcc | 1.85 V - 3.8 V |
| Datasheet | [Datasheet](https://www.silabs.com/documents/public/data-sheets/efm32gg11-datasheet.pdf) |
| Manual | [Manual](https://www.silabs.com/documents/public/reference-manuals/efm32gg11-rm.pdf) |
| Board Manual | [Board Manual](https://www.silabs.com/documents/public/user-guides/ug287-stk3701.pdf) |
| Board Schematic | Can be downloaded using Silicon Labs' Simplicity Studio |
### Pinout
This is the pinout of the expansion header on the right side of the board.
PIN 1 is the bottom-left contact when the header faces you horizontally.
| RIOT Peripheral | Name | PIN | PIN | Name | RIOT Peripheral |
|-----------------|------|-----|-----|--------|-----------------|
| | 3V3 | 20 | 19 | ID SDA | |
| | 5V | 18 | 17 | ID SCL | |
| I2C_DEV(0):SDA | PC0 | 16 | 15 | PC1 | I2C_DEV(0):SCL |
| UART_DEV(1):RX | PE9 | 14 | 13 | PB9 | |
| UART_DEV(1):TX | PE8 | 12 | 11 | PB11 | DAC_LINE(0) |
| | PE13 | 10 | 9 | PC5 | I2C_DEV(1):SCL |
| SPI_DEV(0):CLK | PE12 | 8 | 7 | PC4 | I2C_DEV(1):SDA |
| SPI_DEV(0):MISO | PE11 | 6 | 5 | PA13 | |
| SPI_DEV(0):MOSI | PE10 | 4 | 3 | PA12 | |
| | VMCU | 2 | 1 | GND | |
**Note**: not all starter kits by Silicon Labs share the same pinout!
**Note:** some pins are connected to the board controller, when enabled!
### Peripheral mapping
| Peripheral | Number | Hardware | Pins | Comments |
|-------------|---------|------------|------------------|-------------------------------------|
| ADC | 0 | ADC0:CH0 | | Internal temperature |
| ADC | 1 | ADC0:CH1 | | AVDD |
| DAC | 0 | DAC0:OUT0 | PB11 | AVVD as reference voltage |
| I2C | 0 | I2C0 | SDA:PC0, SCL:PC1 | Normal speed |
| I2C | 1 | I2C1 | SDA:PC7, SCL:PC5 | Normal speed |
| I2C | 2 | I2C2 | SDA:PI4, SCL:PI5 | Normal speed, Sensor I2C bus |
| HWCRYPTO | - | - | | AES128/AES256, SHA1, SHA224/SHA256 |
| HWRNG | - | TNRG0 | | True Random Number Generator (TRNG) |
| RTT | - | RTCC | | 1 Hz interval, either RTT or RTC |
| RTC | - | RTCC | | 1 Hz interval, either RTT or RTC |
| SPI | 0 | USART0 | MOSI:PE10, MISO:PE11, CLK:PE12 | |
| Timer | 0 | WTIMER0 + WTIMER1 | | WTIMER0 is used as prescaler |
| Timer | 1 | TIMER0 + TIMER1 | | TIMER0 is used as prescaler |
| Timer | 2 | LETIMER0 | | |
| UART | 0 | USART4 | RX:PH5, TX:PH4 | Default STDIO |
| UART | 1 | USART5 | RX:PE9, TX:PE8 | |
### User interface
| Peripheral | Mapped to | Pin | Comments |
|------------|-----------|-----------|------------|
| Button | PB0_PIN | PC8 | |
| | PB1_PIN | PC9 | |
| LED | LED0R_PIN | PH10 | |
| | LED0G_PIN | PH11 | |
| | LED0B_PIN | PH12 | |
| | LED1R_PIN | PH13 | |
| | LED1G_PIN | PH14 | |
| | LED1B_PIN | PH15 | |
| | LED0_PIN | LED0R_PIN | |
| | LED1_PIN | LED1R_PIN | |
## Implementation Status
| Device | ID | Supported | Comments |
|------------------|------------|-----------|----------------------------------------------------|
| MCU | EFM32GG11B | yes | Power modes supported |
| Low-level driver | ADC | yes | |
| | DAC | yes | VDAC, IDAC is not supported |
| | Ethernet | no | |
| | Flash | yes | |
| | GPIO | yes | Interrupts are shared across pins (see ref manual) |
| | HW Crypto | yes | |
| | I2C | yes | |
| | PWM | yes | |
| | RTCC | yes | As RTT or RTC |
| | SPI | yes | Only master mode |
| | Timer | yes | |
| | TRNG | yes | True Random Number Generator |
| | UART | yes | USART is shared with SPI. LEUART baud rate limited |
| | USB | yes | Device mode |
## Board configuration
### Board controller
The starter kit is equipped with a Board Controller. This controller provides a
virtual serial port. The board controller is enabled via a GPIO pin.
By default, this pin is enabled. You can disable the board controller module by
passing `DISABLE_MODULE=silabs_bc` to the `make` command.
**Note:** to use the virtual serial port, ensure you have the latest board
controller firmware installed.
**Note:** the board controller *always* configures the virtual serial port at
115200 baud with 8 bits, no parity and one stop bit. This also means that it
expects data from the MCU with the same settings.
### Advanced Energy Monitor
This development kit has an Advanced Energy Monitor. It can be connected to the
Simplicity Studio development software.
This development kit can measure energy consumption and correlate this with the
code. It allows you to measure energy consumption on code-level.
The board controller is responsible for measuring energy consumption. For
real-time code correlation, the CoreDebug peripheral will be configured to
output MCU register data and interrupt data via the SWO port.
By default, this feature is enabled. It can be disabled by passing
`DISABLE_MODULE=silabs_aem` to the `make` command.
Note that Simplicity Studio requires debug symbols to correlate code. RIOT-OS
defaults to GDB debug symbols, but Simplicity Studio requires DWARF-2 debug
symbols (`-gdwarf-2` for GCC).
### Clock selection
There are several clock sources that are available for the different
peripherals. You are advised to read [AN0004.0]
(https://www.silabs.com/documents/public/application-notes/an0004.0-efm32-cmu.pdf)
to get familiar with the different clocks.
| Source | Internal | Speed | Comments |
|--------|----------|------------|------------------------------------|
| HFRCO | Yes | 19 MHz | Enabled during startup, changeable |
| HFXO | No | 50 MHz | |
| LFRCO | Yes | 32.768 kHz | |
| LFXO | No | 32.768 kHz | |
| ULFRCO | No | 1 kHz | Not very reliable as a time source |
The sources can be used to clock following branches:
| Branch | Sources | Comments |
|--------|-------------------------|------------------------------|
| HF | HFRCO, HFXO | Core, peripherals |
| LFA | LFRCO, LFXO | Low-power timers |
| LFB | LFRCO, LFXO, CORELEDIV2 | Low-power UART |
| LFE | LFRCO, LFXO | Real-time Clock and Calendar |
CORELEDIV2 is a source that depends on the clock source that powers the core.
It is divided by 2 or 4 to not exceed maximum clock frequencies (EMLIB takes
care of this).
The frequencies mentioned in the tables above are specific for this starter
kit.
It is important that the clock speeds are known to the code, for proper
calculations of speeds and baud rates. If the HFXO or LFXO are different from
the speeds above, ensure to pass `EFM32_HFXO_FREQ=freq_in_hz` and
`EFM32_LFXO_FREQ=freq_in_hz` to your compiler.
You can override the branch's clock source by adding `CLOCK_LFA=source` to your
compiler defines, e.g. `CLOCK_LFA=cmuSelect_LFRCO`.
### Low-power peripherals
The low-power UART is capable of providing an UART peripheral using a low-speed
clock. When the LFB clock source is the LFRCO or LFXO, it can still be used in
EM2. However, this limits the baud rate to 9600 baud. If a higher baud rate is
desired, set the clock source to CORELEDIV2.
**Note:** peripheral mappings in your board definitions will not be affected by
this setting. Ensure you do not refer to any low-power peripherals.
### RTC or RTT
RIOT-OS has support for *Real-Time Tickers* and *Real-Time Clocks*.
However, this board MCU family has support for a 32-bit *Real-Time Clock and
Calendar*, which can be configured in ticker mode **or** calendar mode.
Therefore, only one of both peripherals can be enabled at the same time.
Configured at 1 Hz interval, the RTCC will overflow each 136 years.
### Hardware crypto
This MCU is equipped with a hardware-accelerated crypto peripheral that can
speed up AES128, AES256, SHA1, SHA256 and several other cryptographic
computations.
A peripheral driver interface is proposed, but not yet implemented.
### Usage of EMLIB
This port makes uses of EMLIB by Silicon Labs to abstract peripheral registers.
While some overhead is to be expected, it ensures proper setup of devices,
provides chip errata and simplifies development. The exact overhead depends on
the application and peripheral usage, but the largest overhead is expected
during peripheral setup. A lot of read/write/get/set methods are implemented as
inline methods or macros (which have no overhead).
Another advantage of EMLIB are the included assertions. These assertions ensure
that peripherals are used properly. To enable this, pass `DEBUG_EFM` to your
compiler.
### Pin locations
The EFM32 platform supports peripherals to be mapped to different pins
(predefined locations). The definitions in `periph_conf.h` mostly consist of a
location number and the actual pins. The actual pins are required to configure
the pins via GPIO driver, while the location is used to map the peripheral to
these pins.
In other words, these definitions must match. Refer to the data sheet for more
information.
This MCU has extended pin mapping support. Each pin of a peripheral can be
connected separately to one of the predefined pins for that peripheral.
## Flashing the device
The board provides a on-board SEGGER J-Link debugger through the micro USB
board so that flashing and debugging is very easy.
Flashing is supported by RIOT-OS using the command below:
```
make flash
```
To run the GDB debugger, use the command:
```
make debug
```
Or, to connect with your own debugger:
```
make debug-server
```
Some boards have (limited) support for emulation, which can be started with:
```
make emulate
```
## Supported Toolchains
For using the Silicon Labs SLSTK3701A starter kit we strongly recommend
the usage of the [GNU Tools for ARM Embedded Processors](https://developer.arm.com/open-source/gnu-toolchain/gnu-rm)
toolchain.
## License information
* Silicon Labs' EMLIB: zlib-style license (permits distribution of source).
*/

View File

@ -0,0 +1,138 @@
/*
* Copyright (C) 2015-2020 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup boards_slstk3701a
* @{
*
* @file
* @brief Board specific definitions for the SLSTK3701A starter kit
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Bas Stottelaar <basstottelaar@gmail.com>
*/
#ifndef BOARD_H
#define BOARD_H
#include "cpu.h"
#include "periph_conf.h"
#include "periph/gpio.h"
#include "periph/spi.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @name Xtimer configuration
*
* The timer runs at 1000 kHz to increase accuracy, or at 32.768 kHz if
* LETIMER is used.
* @{
*/
#if IS_ACTIVE(CONFIG_EFM32_XTIMER_USE_LETIMER)
#define XTIMER_DEV (TIMER_DEV(2))
#define XTIMER_HZ (32768UL)
#define XTIMER_WIDTH (16)
#else
#define XTIMER_DEV (TIMER_DEV(0))
#define XTIMER_HZ (1000000UL)
#define XTIMER_WIDTH (32)
#endif
#define XTIMER_CHAN (0)
/** @} */
/**
* @name Board controller configuration
*
* Define the GPIO pin to enable the BC, to allow serial communication
* via the USB port.
* @{
*/
#define BC_PIN GPIO_PIN(PE, 1)
/** @} */
/**
* @name Push button pin definitions
* @{
*/
#define PB0_PIN GPIO_PIN(PC, 8)
#define PB1_PIN GPIO_PIN(PC, 9)
/** @} */
/**
* @name LED pin definitions
* @{
*/
#define LED0R_PIN GPIO_PIN(PH, 10)
#define LED0G_PIN GPIO_PIN(PH, 11)
#define LED0B_PIN GPIO_PIN(PH, 12)
#define LED1R_PIN GPIO_PIN(PH, 13)
#define LED1G_PIN GPIO_PIN(PH, 14)
#define LED1B_PIN GPIO_PIN(PH, 15)
#define LED0_PIN LED0R_PIN
#define LED1_PIN LED1R_PIN
/** @} */
/**
* @name Macros for controlling the on-board LEDs
* @{
*/
#define LED0_ON gpio_set(LED0_PIN)
#define LED0_OFF gpio_clear(LED0_PIN)
#define LED0_TOGGLE gpio_toggle(LED0_PIN)
#define LED1_ON gpio_set(LED1_PIN)
#define LED1_OFF gpio_clear(LED1_PIN)
#define LED1_TOGGLE gpio_toggle(LED1_PIN)
/** @} */
/**
* @name Display configuration
*
* Connection to the on-board Sharp Memory LCD (LS013B7DH03).
* @{
*/
#define DISP_SPI SPI_DEV(0)
#define DISP_COM_PIN GPIO_PIN(PA, 11)
#define DISP_CS_PIN GPIO_PIN(PC, 14)
#define DISP_EN_PIN GPIO_PIN(PA, 9)
/** @} */
/**
* @name Temperature sensor configuration
*
* Connection to the on-board temperature/humidity sensor (Si7021).
* @{
*/
#define SI7021_I2C I2C_DEV(2)
#define SI7021_EN_PIN GPIO_PIN(PB, 3)
#define SI70XX_PARAM_I2C_DEV SI7021_I2C
/** @} */
/**
* @name Core temperature sensor configuration
*
* Connection to the on-chip temperature sensor.
* @{
*/
#define CORETEMP_ADC ADC_LINE(0)
/** @} */
/**
* @brief Initialize the board (GPIO, sensors, clocks).
*/
void board_init(void);
#ifdef __cplusplus
}
#endif
#endif /* BOARD_H */
/** @} */

View File

@ -0,0 +1,63 @@
/*
* Copyright (C) 2016-2020 Bas Stottelaar <basstottelaar@gmail.com>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup boards_slstk3701a
* @{
*
* @file
* @brief Board specific configuration of direct mapped GPIOs
*
* @author Bas Stottelaar <basstottelaar@gmail.com>
*/
#ifndef GPIO_PARAMS_H
#define GPIO_PARAMS_H
#include "board.h"
#include "saul/periph.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief GPIO pin configuration
*/
static const saul_gpio_params_t saul_gpio_params[] =
{
{
.name = "LED 0",
.pin = LED0_PIN,
.mode = GPIO_OUT
},
{
.name = "LED 1",
.pin = LED1_PIN,
.mode = GPIO_OUT
},
{
.name = "Button 1",
.pin = PB0_PIN,
.mode = GPIO_IN_PU,
.flags = SAUL_GPIO_INVERTED
},
{
.name = "Button 2",
.pin = PB1_PIN,
.mode = GPIO_IN_PU,
.flags = SAUL_GPIO_INVERTED
}
};
#ifdef __cplusplus
}
#endif
#endif /* GPIO_PARAMS_H */
/** @} */

View File

@ -0,0 +1,265 @@
/*
* Copyright (C) 2015-2020 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup boards_slstk3701a
* @{
*
* @file
* @brief Configuration of CPU peripherals for the SLSTK3701A starter kit
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Bas Stottelaar <basstottelaar@gmail.com>
*/
#ifndef PERIPH_CONF_H
#define PERIPH_CONF_H
#include "cpu.h"
#include "periph_cpu.h"
#include "em_cmu.h"
#include "usbdev_cfg_otg_fs.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @name Clock configuration
* @{
*/
#ifndef CLOCK_HF
#define CLOCK_HF cmuSelect_HFXO
#endif
#ifndef CLOCK_CORE_DIV
#define CLOCK_CORE_DIV cmuClkDiv_1
#endif
#ifndef CLOCK_LFA
#define CLOCK_LFA cmuSelect_LFXO
#endif
#ifndef CLOCK_LFB
#define CLOCK_LFB cmuSelect_LFXO
#endif
#ifndef CLOCK_LFE
#define CLOCK_LFE cmuSelect_LFXO
#endif
/** @} */
/**
* @name ADC configuration
* @{
*/
static const adc_conf_t adc_config[] = {
{
.dev = ADC0,
.cmu = cmuClock_ADC0,
}
};
static const adc_chan_conf_t adc_channel_config[] = {
{
.dev = 0,
.input = adcPosSelTEMP,
.reference = adcRef1V25,
.acq_time = adcAcqTime8
},
{
.dev = 0,
.input = adcPosSelAVDD,
.reference = adcRef5V,
.acq_time = adcAcqTime8
}
};
#define ADC_DEV_NUMOF ARRAY_SIZE(adc_config)
#define ADC_NUMOF ARRAY_SIZE(adc_channel_config)
/** @} */
/**
* @name DAC configuration
* @{
*/
static const dac_conf_t dac_config[] = {
{
.dev = VDAC0,
.ref = vdacRefAvdd,
.cmu = cmuClock_VDAC0,
},
};
static const dac_chan_conf_t dac_channel_config[] = {
{
.dev = 0,
.index = 0,
},
};
#define DAC_DEV_NUMOF ARRAY_SIZE(dac_config)
#define DAC_NUMOF ARRAY_SIZE(dac_channel_config)
/** @} */
/**
* @name I2C configuration
* @{
*/
static const i2c_conf_t i2c_config[] = {
{
.dev = I2C0,
.sda_pin = GPIO_PIN(PC, 0),
.scl_pin = GPIO_PIN(PC, 1),
.loc = I2C_ROUTELOC0_SDALOC_LOC4 |
I2C_ROUTELOC0_SCLLOC_LOC4,
.cmu = cmuClock_I2C0,
.irq = I2C0_IRQn,
.speed = I2C_SPEED_NORMAL
},
{
.dev = I2C1,
.sda_pin = GPIO_PIN(PC, 7),
.scl_pin = GPIO_PIN(PC, 5),
.loc = I2C_ROUTELOC0_SDALOC_LOC0 |
I2C_ROUTELOC0_SCLLOC_LOC0,
.cmu = cmuClock_I2C1,
.irq = I2C1_IRQn,
.speed = I2C_SPEED_NORMAL
},
{
.dev = I2C2,
.sda_pin = GPIO_PIN(PI, 4),
.scl_pin = GPIO_PIN(PI, 5),
.loc = I2C_ROUTELOC0_SDALOC_LOC7 |
I2C_ROUTELOC0_SCLLOC_LOC7,
.cmu = cmuClock_I2C2,
.irq = I2C2_IRQn,
.speed = I2C_SPEED_NORMAL
}
};
#define I2C_NUMOF ARRAY_SIZE(i2c_config)
#define I2C_0_ISR isr_i2c0
#define I2C_1_ISR isr_i2c1
#define I2C_2_ISR isr_i2c2
/** @} */
/**
* @name RTT configuration
* @{
*/
#ifndef RTT_FREQUENCY
#define RTT_FREQUENCY (1U)
#endif
/** @} */
/**
* @name SPI configuration
* @{
*/
static const spi_dev_t spi_config[] = {
{
.dev = USART0,
.mosi_pin = GPIO_PIN(PE, 10),
.miso_pin = GPIO_PIN(PE, 11),
.clk_pin = GPIO_PIN(PE, 12),
.loc = USART_ROUTELOC0_TXLOC_LOC0 |
USART_ROUTELOC0_RXLOC_LOC0 |
USART_ROUTELOC0_CLKLOC_LOC0,
.cmu = cmuClock_USART0,
.irq = USART0_RX_IRQn
}
};
#define SPI_NUMOF ARRAY_SIZE(spi_config)
/** @} */
/**
* @name Timer configuration
*
* The implementation uses two timers in cascade mode.
* @{
*/
static const timer_conf_t timer_config[] = {
{
.prescaler = {
.dev = WTIMER0,
.cmu = cmuClock_WTIMER0
},
.timer = {
.dev = WTIMER1,
.cmu = cmuClock_WTIMER1
},
.irq = WTIMER1_IRQn,
.channel_numof = 3
},
{
.prescaler = {
.dev = TIMER0,
.cmu = cmuClock_TIMER0
},
.timer = {
.dev = TIMER1,
.cmu = cmuClock_TIMER1
},
.irq = TIMER1_IRQn,
.channel_numof = 3
},
{
.prescaler = {
.dev = NULL,
.cmu = cmuClock_LETIMER0
},
.timer = {
.dev = LETIMER0,
.cmu = cmuClock_LETIMER0
},
.irq = LETIMER0_IRQn,
.channel_numof = 2
}
};
#define TIMER_NUMOF ARRAY_SIZE(timer_config)
#define TIMER_0_ISR isr_wtimer1
#define TIMER_1_ISR isr_timer1
#define TIMER_2_ISR isr_letimer0
/** @} */
/**
* @name UART configuration
* @{
*/
static const uart_conf_t uart_config[] = {
{
.dev = USART4,
.rx_pin = GPIO_PIN(PH, 5),
.tx_pin = GPIO_PIN(PH, 4),
.loc = USART_ROUTELOC0_RXLOC_LOC4 |
USART_ROUTELOC0_TXLOC_LOC4,
.cmu = cmuClock_USART4,
.irq = USART4_RX_IRQn,
},
{
.dev = USART5,
.rx_pin = GPIO_PIN(PE, 9),
.tx_pin = GPIO_PIN(PE, 8),
.loc = USART_ROUTELOC0_RXLOC_LOC4 |
USART_ROUTELOC0_TXLOC_LOC4,
.cmu = cmuClock_USART5,
.irq = USART5_RX_IRQn,
}
};
#define UART_NUMOF ARRAY_SIZE(uart_config)
#define UART_0_ISR_RX isr_usart4_rx
#define UART_1_ISR_RX isr_usart5_rx
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CONF_H */
/** @} */