1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00

cpu/esp*: move periph/flash to cpu/esp_common

This commit is contained in:
Gunar Schorcht 2019-12-12 19:05:38 +01:00
parent b0517c6733
commit 66ee155562
2 changed files with 2 additions and 491 deletions

View File

@ -1,489 +0,0 @@
/*
* Copyright (C) 2018 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_esp32
* @{
*
* @file
* @brief Low-level SPI flash and MTD drive implementation
*
* @author Gunar Schorcht <gunar@schorcht.net>
*
* @}
*/
#if MODULE_MTD
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include "esp_common.h"
#include "irq_arch.h"
#include "mtd.h"
#include "rom/cache.h"
#include "rom/spi_flash.h"
#include "esp_flash_data_types.h"
#include "esp_partition.h"
#include "esp_spi_flash.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define ESP_PART_TABLE_ADDR 0x8000 /* TODO configurable as used in Makefile.include */
#define ESP_PART_TABLE_SIZE 0xC00
#define ESP_PART_ENTRY_SIZE 0x20
#define ESP_PART_ENTRY_MAGIC ESP_PARTITION_MAGIC
/* the external pointer to the system MTD device */
mtd_dev_t* mtd0 = 0;
mtd_dev_t _flash_dev;
mtd_desc_t _flash_driver;
/* forward declaration of mtd functions */
static int _flash_init (mtd_dev_t *dev);
static int _flash_read (mtd_dev_t *dev, void *buff, uint32_t addr, uint32_t size);
static int _flash_write (mtd_dev_t *dev, const void *buff, uint32_t addr, uint32_t size);
static int _flash_erase (mtd_dev_t *dev, uint32_t addr, uint32_t size);
static int _flash_power (mtd_dev_t *dev, enum mtd_power_state power);
static uint32_t _flash_beg; /* first byte addr of the flash drive in SPI flash */
static uint32_t _flash_end; /* first byte addr after the flash drive in SPI flash */
static uint32_t _flash_size; /* resulting size of the flash drive in SPI flash */
static esp_rom_spiflash_chip_t* _flashchip = NULL;
void spi_flash_drive_init (void)
{
DEBUG("%s\n", __func__);
_flashchip = &g_rom_flashchip;
_flash_driver.init = &_flash_init;
_flash_driver.read = &_flash_read;
_flash_driver.write = &_flash_write;
_flash_driver.erase = &_flash_erase;
_flash_driver.power = &_flash_power;
/* first, set the beginning of flash to 0x0 to read partition table */
_flash_beg = 0x0;
_flash_end = _flashchip->chip_size - 5 * _flashchip->sector_size;
_flash_size = _flash_end - _flash_beg;
/* read in partition table an determine the top of all partitions */
uint32_t part_addr = ESP_PART_TABLE_ADDR;
uint8_t part_buf[ESP_PART_ENTRY_SIZE];
bool part_read = true;
uint32_t part_top = 0;
esp_partition_info_t* part = (esp_partition_info_t*)part_buf;
while (part_read && part_addr < ESP_PART_TABLE_ADDR + ESP_PART_TABLE_SIZE) {
spi_flash_read (part_addr, (void*)part_buf, ESP_PART_ENTRY_SIZE);
if (part->magic == ESP_PART_ENTRY_MAGIC) {
DEBUG("%s partition @%08x size=%08x label=%s\n", __func__,
part->pos.offset, part->pos.size, part->label);
if (part->pos.offset + part->pos.size > part_top) {
part_top = part->pos.offset + part->pos.size;
}
part_addr += ESP_PART_ENTRY_SIZE;
}
else {
part_read = false;
}
}
/* map the partition top address to next higher multiple of 0x100000 */
part_top = (part_top + 0x100000) & ~0xfffff;
/*
* if flash drive start address is not configured, use the determined
* one otherwise check the configured one and use it
*/
#if SPI_FLASH_DRIVE_START
if (part_top > SPI_FLASH_DRIVE_START) {
LOG_ERROR("configured MTD start address in SPI Flash is to less\n");
}
else if (SPI_FLASH_DRIVE_START % _flashchip->sector_size) {
LOG_ERROR("configured start address has to be a "
"multiple of %d byte\n", _flashchip->sector_size);
part_top = ((SPI_FLASH_DRIVE_START +
_flashchip->sector_size)) & ~(_flashchip->sector_size-1);
}
else {
part_top = SPI_FLASH_DRIVE_START;
}
#endif
LOG_DEBUG("MTD in SPI flash starts at address 0x%08x\n", part_top);
/* second, change flash parameters according to partition table */
_flash_beg = part_top;
_flash_end = _flashchip->chip_size - 5 * _flashchip->sector_size;
_flash_size = _flash_end - _flash_beg; /* MUST be at least 3 sectors (0x3000) */
_flash_dev.driver = &_flash_driver;
_flash_dev.sector_count = _flash_size / _flashchip->sector_size;
mtd0 = &_flash_dev;
_flash_dev.pages_per_sector = _flashchip->sector_size / _flashchip->page_size;
_flash_dev.page_size = _flashchip->page_size;
DEBUG("%s flashchip chip_size=%d block_size=%d sector_size=%d page_size=%d\n", __func__,
_flashchip->chip_size, _flashchip->block_size,
_flashchip->sector_size, _flashchip->page_size);
DEBUG("%s flash_dev sector_count=%d pages_per_sector=%d page_size=%d\n", __func__,
_flash_dev.sector_count, _flash_dev.pages_per_sector, _flash_dev.page_size);
DEBUG("\n");
}
#define RETURN_WITH_ESP_ERR_CODE(err) do { \
switch (err) { \
case ESP_ROM_SPIFLASH_RESULT_OK : return ESP_OK; \
case ESP_ROM_SPIFLASH_RESULT_ERR : return ESP_ERR_FLASH_OP_FAIL; \
case ESP_ROM_SPIFLASH_RESULT_TIMEOUT: return ESP_ERR_FLASH_OP_TIMEOUT; \
} \
return ESP_FAIL; \
} while(0)
uint8_t _flash_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM];
esp_err_t IRAM_ATTR spi_flash_read(size_t addr, void *buff, size_t size)
{
DEBUG("%s addr=%08x size=%u buf=%p\n", __func__, addr, size, buff);
CHECK_PARAM_RET (buff != NULL, -ENOTSUP);
/* size must be within the flash address space */
CHECK_PARAM_RET (addr + size <= _flash_end, -EOVERFLOW);
int result = ESP_ROM_SPIFLASH_RESULT_OK;
uint32_t len = size;
/* if addr is not 4 byte aligned, we need to read the first full word */
if (addr & 0x3) {
uint32_t word_addr = addr & ~0x3;
uint32_t pos_in_word = addr & 0x3;
uint32_t len_in_word = 4 - pos_in_word;
len_in_word = (len_in_word < len) ? len_in_word : len;
/* disable interrupts and the cache */
critical_enter();
Cache_Read_Disable(PRO_CPU_NUM);
result = esp_rom_spiflash_read (word_addr, (uint32_t*)_flash_buf, 4);
memcpy(buff, _flash_buf + pos_in_word, len_in_word);
/* enable interrupts and the cache */
Cache_Read_Enable(PRO_CPU_NUM);
critical_exit();
buff = (uint8_t*)buff + len_in_word;
addr += len_in_word;
len -= len_in_word;
}
/* read all full words, maximum ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM
in one read operation */
while (len > 4 && result == ESP_ROM_SPIFLASH_RESULT_OK) {
uint32_t len_full_words = len & ~0x3;
if (len_full_words > ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM) {
len_full_words = ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM;
}
/* disable interrupts and the cache */
critical_enter();
Cache_Read_Disable(PRO_CPU_NUM);
result |= esp_rom_spiflash_read (addr, (uint32_t*)_flash_buf, len_full_words);
memcpy(buff, _flash_buf, len_full_words);
/* enable interrupts and the cache */
Cache_Read_Enable(PRO_CPU_NUM);
critical_exit();
buff = (uint8_t*)buff + len_full_words;
addr += len_full_words;
len -= len_full_words;
}
/* if there is some remaining, we need to prepare last word */
if (len && result == ESP_ROM_SPIFLASH_RESULT_OK) {
/* disable interrupts and the cache */
critical_enter();
Cache_Read_Disable(PRO_CPU_NUM);
result |= esp_rom_spiflash_read (addr, (uint32_t*)_flash_buf, 4);
memcpy(buff, _flash_buf, len);
/* enable interrupts and the cache */
Cache_Read_Enable(PRO_CPU_NUM);
critical_exit();
}
/* return with the ESP-IDF error code that is mapped from ROM error code */
RETURN_WITH_ESP_ERR_CODE(result);
}
esp_err_t IRAM_ATTR spi_flash_write(size_t addr, const void *buff, size_t size)
{
DEBUG("%s addr=%08x size=%u buf=%p\n", __func__, addr, size, buff);
CHECK_PARAM_RET (buff != NULL, -ENOTSUP);
/* size must be within the flash address space */
CHECK_PARAM_RET (addr + size <= _flash_end, -EOVERFLOW);
/* prepare for write access */
int result = esp_rom_spiflash_unlock();
uint32_t len = size;
/* if addr is not 4 byte aligned, we need to prepare first full word */
if (addr & 0x3 && result == ESP_ROM_SPIFLASH_RESULT_OK) {
uint32_t word_addr = addr & ~0x3;
uint32_t pos_in_word = addr & 0x3;
uint32_t len_in_word = 4 - pos_in_word;
len_in_word = (len_in_word < len) ? len_in_word : len;
/* disable interrupts and the cache */
critical_enter();
Cache_Read_Disable(PRO_CPU_NUM);
result |= esp_rom_spiflash_read (word_addr, (uint32_t*)_flash_buf, 4);
memcpy(_flash_buf + pos_in_word, buff, len_in_word);
result |= esp_rom_spiflash_write (word_addr, (uint32_t*)_flash_buf, 4);
/* enable interrupts and the cache */
Cache_Read_Enable(PRO_CPU_NUM);
critical_exit();
buff = (uint8_t*)buff + len_in_word;
addr += len_in_word;
len -= len_in_word;
}
/* write all full words, maximum ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM
in one write operation */
while (len > 4 && result == ESP_ROM_SPIFLASH_RESULT_OK) {
uint32_t len_full_words = len & ~0x3;
if (len_full_words > ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM) {
len_full_words = ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM;
}
/* disable interrupts and the cache */
critical_enter();
Cache_Read_Disable(PRO_CPU_NUM);
memcpy(_flash_buf, buff, len_full_words);
result |= esp_rom_spiflash_write (addr, (uint32_t*)_flash_buf, len_full_words);
/* enable interrupts and the cache */
Cache_Read_Enable(PRO_CPU_NUM);
critical_exit();
buff = (uint8_t*)buff + len_full_words;
addr += len_full_words;
len -= len_full_words;
}
/* if there is some remaining, we need to prepare last word */
if (len && result == ESP_ROM_SPIFLASH_RESULT_OK) {
/* disable interrupts and the cache */
critical_enter();
Cache_Read_Disable(PRO_CPU_NUM);
result |= esp_rom_spiflash_read (addr, (uint32_t*)_flash_buf, 4);
memcpy(_flash_buf, buff, len);
result |= esp_rom_spiflash_write (addr, (uint32_t*)_flash_buf, 4);
/* enable interrupts and the cache */
Cache_Read_Enable(PRO_CPU_NUM);
critical_exit();
}
/* reset write access */
esp_rom_spiflash_lock();
/* return with the ESP-IDF error code that is mapped from ROM error code */
RETURN_WITH_ESP_ERR_CODE(result);
}
esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sector)
{
return spi_flash_erase_range(sector * _flashchip->sector_size, 1);
}
esp_err_t IRAM_ATTR spi_flash_erase_range(size_t addr, size_t size)
{
/* size must be within the flash address space */
CHECK_PARAM_RET (addr + size <= _flash_end, -EOVERFLOW);
/* size must be a multiple of sector_size && at least one sector */
CHECK_PARAM_RET (size >= _flashchip->sector_size, -ENOTSUP);
CHECK_PARAM_RET (size % _flashchip->sector_size == 0, -ENOTSUP)
/* prepare for write access */
uint32_t result = esp_rom_spiflash_unlock();
/* erase as many sectors as necessary */
uint32_t sec = addr / _flashchip->sector_size;
uint32_t cnt = size / _flashchip->sector_size;
uint32_t sec_per_block = _flashchip->block_size / _flashchip->sector_size;
while (cnt && result == ESP_ROM_SPIFLASH_RESULT_OK) {
/* disable interrupts and the cache */
critical_enter();
Cache_Read_Disable(PRO_CPU_NUM);
/* erase block-wise (64 kByte) if cnt is at least sec_per_block */
if (cnt >= sec_per_block) {
result = esp_rom_spiflash_erase_block (sec / sec_per_block);
sec += sec_per_block;
cnt -= sec_per_block;
}
else {
result = esp_rom_spiflash_erase_sector (sec++);
cnt--;
}
/* enable interrupts and the cache */
Cache_Read_Enable(PRO_CPU_NUM);
critical_exit();
}
/* reset write access */
esp_rom_spiflash_lock();
/* return with the ESP-IDF error code that is mapped from ROM error code */
RETURN_WITH_ESP_ERR_CODE(result);
}
const esp_partition_t* esp_partition_find_first(esp_partition_type_t type,
esp_partition_subtype_t subtype,
const char* label)
{
uint32_t info_addr = ESP_PART_TABLE_ADDR;
uint8_t info_buf[ESP_PART_ENTRY_SIZE];
bool info_read = true;
esp_partition_info_t* info = (esp_partition_info_t*)info_buf;
esp_partition_t* part;
while (info_read && info_addr < ESP_PART_TABLE_ADDR + ESP_PART_TABLE_SIZE) {
spi_flash_read (info_addr, (void*)info_buf, ESP_PART_ENTRY_SIZE);
if (info->magic == ESP_PART_ENTRY_MAGIC) {
DEBUG("%s partition @%08x size=%08x label=%s\n", __func__,
info->pos.offset, info->pos.size, info->label);
if ((info->type == type) &&
(info->subtype == subtype || subtype == ESP_PARTITION_SUBTYPE_ANY) &&
(label == NULL || strcmp((const char*)info->label, label) == 0)) {
part = malloc(sizeof(esp_partition_t));
part->type = info->type;
part->subtype = info->subtype;
part->address = info->pos.offset;
part->size = info->pos.size;
part->encrypted = info->flags & PART_FLAG_ENCRYPTED;
strncpy(part->label, (const char*)info->label, sizeof(info->label));
part->label[sizeof(part->label) - 1] = 0x0;
return part;
}
info_addr += ESP_PART_ENTRY_SIZE;
}
else {
info_read = false;
}
}
return NULL;
}
esp_err_t esp_partition_erase_range(const esp_partition_t* part,
size_t addr, size_t size)
{
CHECK_PARAM_RET(part != NULL, ESP_ERR_INVALID_ARG);
/* start addr and size must be inside the partition */
CHECK_PARAM_RET(addr <= part->size, ESP_ERR_INVALID_ARG);
CHECK_PARAM_RET(addr + size <= part->size, ESP_ERR_INVALID_SIZE);
/* start addr and size must be a multiple of sector size */
CHECK_PARAM_RET(addr % SPI_FLASH_SEC_SIZE == 0, ESP_ERR_INVALID_ARG);
CHECK_PARAM_RET(size % SPI_FLASH_SEC_SIZE == 0, ESP_ERR_INVALID_SIZE);
return spi_flash_erase_range(part->address + addr, size);
}
static int _flash_init (mtd_dev_t *dev)
{
DEBUG("%s dev=%p driver=%p\n", __func__, dev, &_flash_driver);
CHECK_PARAM_RET (dev == &_flash_dev, -ENODEV);
return 0;
}
static int _flash_read (mtd_dev_t *dev, void *buff, uint32_t addr, uint32_t size)
{
DEBUG("%s dev=%p addr=%08x size=%u buf=%p\n", __func__, dev, addr, size, buff);
CHECK_PARAM_RET (dev == &_flash_dev, -ENODEV);
CHECK_PARAM_RET (buff != NULL, -ENOTSUP);
/* size must be within the flash address space */
CHECK_PARAM_RET (_flash_beg + addr + size <= _flash_end, -EOVERFLOW);
return (spi_flash_read(_flash_beg + addr, buff, size) == ESP_OK) ?(int)size : -EIO;
}
static int _flash_write (mtd_dev_t *dev, const void *buff, uint32_t addr, uint32_t size)
{
DEBUG("%s dev=%p addr=%08x size=%u buf=%p\n", __func__, dev, addr, size, buff);
CHECK_PARAM_RET (dev == &_flash_dev, -ENODEV);
CHECK_PARAM_RET (buff != NULL, -ENOTSUP);
/* size must be within the flash address space */
CHECK_PARAM_RET (_flash_beg + addr + size <= _flash_end, -EOVERFLOW);
/* addr + size must be within a page */
CHECK_PARAM_RET (size <= _flashchip->page_size, -EOVERFLOW);
CHECK_PARAM_RET ((addr % _flashchip->page_size) + size <= _flashchip->page_size, -EOVERFLOW);
return (spi_flash_write(_flash_beg + addr, buff, size) == ESP_OK) ? (int)size : -EIO;
}
static int _flash_erase (mtd_dev_t *dev, uint32_t addr, uint32_t size)
{
DEBUG("%s dev=%p addr=%08x size=%u\n", __func__, dev, addr, size);
CHECK_PARAM_RET (dev == &_flash_dev, -ENODEV);
/* size must be within the flash address space */
CHECK_PARAM_RET (_flash_beg + addr + size <= _flash_end, -EOVERFLOW);
/* size must be a multiple of sector_size && at least one sector */
CHECK_PARAM_RET (size >= _flashchip->sector_size, -EOVERFLOW);
CHECK_PARAM_RET (size % _flashchip->sector_size == 0, -EOVERFLOW)
return (spi_flash_erase_range(_flash_beg + addr, size) == ESP_OK) ? 0 : -EIO;
}
static int _flash_power (mtd_dev_t *dev, enum mtd_power_state power)
{
DEBUG("%s\n", __func__);
return -ENOTSUP;
}
#endif /* MODULE_MTD */

View File

@ -7,11 +7,11 @@
*/ */
/** /**
* @ingroup cpu_esp8266 * @ingroup cpu_esp_common
* @{ * @{
* *
* @file * @file
* @brief Low-level MTD flash drive implementation * @brief Low-level MTD flash drive implementation for ESP SoCs
* *
* @author Gunar Schorcht <gunar@schorcht.net> * @author Gunar Schorcht <gunar@schorcht.net>
* *