1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00

sys: xtimer concurrency/robustness improvement

This commit is contained in:
Hyungsin 2020-01-09 14:34:43 -08:00
parent c310bfbf75
commit 387344775b
4 changed files with 205 additions and 565 deletions

View File

@ -73,8 +73,10 @@ typedef void (*xtimer_callback_t)(void*);
*/
typedef struct xtimer {
struct xtimer *next; /**< reference to next timer in timer lists */
uint32_t target; /**< lower 32bit absolute target time */
uint32_t long_target; /**< upper 32bit absolute target time */
uint32_t offset; /**< lower 32bit offset time */
uint32_t long_offset; /**< upper 32bit offset time */
uint32_t start_time; /**< lower 32bit absolute start time */
uint32_t long_start_time; /**< upper 32bit absolute start time */
xtimer_callback_t callback; /**< callback function to call when timer
expires */
void *arg; /**< argument to pass to callback function */
@ -218,8 +220,6 @@ static inline void xtimer_periodic_wakeup(xtimer_ticks32_t *last_wakeup, uint32_
* expired.
*
* @param[in] timer timer struct to work with.
* Its xtimer_t::target and xtimer_t::long_target
* fields need to be initialized with 0 on first use
* @param[in] offset microseconds from now
* @param[in] pid pid of the thread that will be woken up
*/
@ -232,8 +232,6 @@ static inline void xtimer_set_wakeup(xtimer_t *timer, uint32_t offset, kernel_pi
* expired.
*
* @param[in] timer timer struct to work with.
* Its xtimer_t::target and xtimer_t::long_target
* fields need to be initialized with 0 on first use
* @param[in] offset microseconds from now
* @param[in] pid pid of the thread that will be woken up
*/
@ -252,8 +250,6 @@ static inline void xtimer_set_wakeup64(xtimer_t *timer, uint64_t offset, kernel_
* know *exactly* what that means.
*
* @param[in] timer the timer structure to use.
* Its xtimer_t::target and xtimer_t::long_target
* fields need to be initialized with 0 on first use
* @param[in] offset time in microseconds from now specifying that timer's
* callback's execution time
*/
@ -273,8 +269,6 @@ static inline void xtimer_set(xtimer_t *timer, uint32_t offset);
* know *exactly* what that means.
*
* @param[in] timer the timer structure to use.
* Its xtimer_t::target and xtimer_t::long_target
* fields need to be initialized with 0 on first use
* @param[in] offset_us time in microseconds from now specifying that timer's
* callback's execution time
*/
@ -426,8 +420,6 @@ void xtimer_set_timeout_flag(xtimer_t *t, uint32_t timeout);
* needs to point to valid memory until the message has been delivered.
*
* @param[in] timer timer struct to work with.
* Its xtimer_t::target and xtimer_t::long_target
* fields need to be initialized with 0 on first use.
* @param[in] offset microseconds from now
* @param[in] msg ptr to msg that will be sent
* @param[in] target_pid pid the message will be sent to
@ -444,8 +436,6 @@ static inline void xtimer_set_msg(xtimer_t *timer, uint32_t offset, msg_t *msg,
* needs to point to valid memory until the message has been delivered.
*
* @param[in] timer timer struct to work with.
* Its xtimer_t::target and xtimer_t::long_target
* fields need to be initialized with 0 on first use.
* @param[in] offset microseconds from now
* @param[in] msg ptr to msg that will be sent
* @param[in] target_pid pid the message will be sent to
@ -487,29 +477,6 @@ static inline int xtimer_msg_receive_timeout64(msg_t *msg, uint64_t timeout);
#define XTIMER_BACKOFF 30
#endif
/**
* @brief xtimer overhead value, in hardware ticks
*
* This value specifies the time a timer will be late if uncorrected, e.g.,
* the system-specific xtimer execution time from timer ISR to executing
* a timer's callback's first instruction.
*
* E.g., with XTIMER_OVERHEAD == 0
* start=xtimer_now();
* xtimer_set(&timer, X);
* (in callback:)
* overhead=xtimer_now()-start-X;
*
* xtimer automatically subtracts XTIMER_OVERHEAD from a timer's target time,
* but when the timer triggers, xtimer will spin-lock until a timer's target
* time is reached, so timers will never trigger early.
*
* This is supposed to be defined per-device in e.g., periph_conf.h.
*/
#ifndef XTIMER_OVERHEAD
#define XTIMER_OVERHEAD 20
#endif
#ifndef XTIMER_ISR_BACKOFF
/**
* @brief xtimer IRQ backoff time, in hardware ticks
@ -522,29 +489,6 @@ static inline int xtimer_msg_receive_timeout64(msg_t *msg, uint64_t timeout);
#define XTIMER_ISR_BACKOFF 20
#endif
#ifndef XTIMER_PERIODIC_SPIN
/**
* @brief xtimer_periodic_wakeup spin cutoff
*
* If the difference between target time and now is less than this value, then
* xtimer_periodic_wakeup will use xtimer_spin instead of setting a timer.
*/
#define XTIMER_PERIODIC_SPIN (XTIMER_BACKOFF * 2)
#endif
#ifndef XTIMER_PERIODIC_RELATIVE
/**
* @brief xtimer_periodic_wakeup relative target cutoff
*
* If the difference between target time and now is less than this value, then
* xtimer_periodic_wakeup will set a relative target time in the future instead
* of the true target.
*
* This is done to prevent target time underflows.
*/
#define XTIMER_PERIODIC_RELATIVE (512)
#endif
/*
* Default xtimer configuration
*/

View File

@ -28,14 +28,13 @@
#endif
#include "periph/timer.h"
#include "irq.h"
#ifdef __cplusplus
extern "C" {
#endif
#if XTIMER_MASK
extern volatile uint32_t _xtimer_high_cnt;
#endif
extern volatile uint64_t _xtimer_current_time;
/**
* @brief IPC message type for xtimer msg callback
@ -66,7 +65,7 @@ static inline uint32_t _xtimer_lltimer_mask(uint32_t val)
* @internal
*/
uint64_t _xtimer_now64(void);
uint32_t _xtimer_now(void);
/**
* @brief Sets the timer to the appropriate timer_list or list_head.
@ -81,7 +80,6 @@ uint64_t _xtimer_now64(void);
* @param[in] target Absolute target value in ticks.
*/
int _xtimer_set_absolute(xtimer_t *timer, uint32_t target);
void _xtimer_set(xtimer_t *timer, uint32_t offset);
void _xtimer_set64(xtimer_t *timer, uint32_t offset, uint32_t long_offset);
void _xtimer_periodic_wakeup(uint32_t *last_wakeup, uint32_t period);
void _xtimer_set_wakeup(xtimer_t *timer, uint32_t offset, kernel_pid_t pid);
@ -109,24 +107,23 @@ void _xtimer_tsleep(uint32_t offset, uint32_t long_offset);
#ifndef DOXYGEN
/* Doxygen warns that these are undocumented, but the documentation can be found in xtimer.h */
static inline uint32_t _xtimer_now(void)
static inline uint64_t _xtimer_now64(void)
{
#if XTIMER_MASK
uint32_t latched_high_cnt, now;
uint32_t now, elapsed;
/* _high_cnt can change at any time, so check the value before
* and after reading the low-level timer. If it hasn't changed,
* then it can be safely applied to the timer count. */
do {
latched_high_cnt = _xtimer_high_cnt;
/* time sensitive since _xtimer_current_time is updated here */
uint8_t state = irq_disable();
now = _xtimer_lltimer_now();
} while (_xtimer_high_cnt != latched_high_cnt);
return latched_high_cnt | now;
#if XTIMER_MASK
elapsed = _xtimer_lltimer_mask(now - _xtimer_lltimer_mask((uint32_t)_xtimer_current_time));
_xtimer_current_time += (uint64_t)elapsed;
#else
return _xtimer_lltimer_now();
elapsed = now - ((uint32_t)_xtimer_current_time & 0xFFFFFFFF);
_xtimer_current_time += (uint64_t)elapsed;
#endif
irq_restore(state);
return _xtimer_current_time;
}
static inline xtimer_ticks32_t xtimer_now(void)
@ -224,7 +221,7 @@ static inline void xtimer_set_wakeup64(xtimer_t *timer, uint64_t offset, kernel_
static inline void xtimer_set(xtimer_t *timer, uint32_t offset)
{
_xtimer_set(timer, _xtimer_ticks_from_usec(offset));
_xtimer_set64(timer, _xtimer_ticks_from_usec(offset), 0);
}
static inline void xtimer_set64(xtimer_t *timer, uint64_t period_us)

View File

@ -67,7 +67,6 @@ void _xtimer_tsleep(uint32_t offset, uint32_t long_offset)
timer.callback = _callback_unlock_mutex;
timer.arg = (void*) &mutex;
timer.target = timer.long_target = 0;
mutex_lock(&mutex);
_xtimer_set64(&timer, offset, long_offset);
@ -81,62 +80,24 @@ void _xtimer_periodic_wakeup(uint32_t *last_wakeup, uint32_t period) {
timer.callback = _callback_unlock_mutex;
timer.arg = (void*) &mutex;
uint32_t target = (*last_wakeup) + period;
/* time sensitive until setting offset */
unsigned int state = irq_disable();
uint32_t now = _xtimer_now();
/* make sure we're not setting a value in the past */
if (now < (*last_wakeup)) {
/* base timer overflowed between last_wakeup and now */
if (!((now < target) && (target < (*last_wakeup)))) {
/* target time has already passed */
goto out;
}
}
else {
/* base timer did not overflow */
if ((((*last_wakeup) <= target) && (target <= now))) {
/* target time has already passed */
goto out;
}
uint32_t elapsed = now - (*last_wakeup);
uint32_t offset = (*last_wakeup) + period - now;
irq_restore(state);
if (elapsed >= period) {
/* timer should be fired right now (some time drift might happen) */
*last_wakeup = now;
return;
}
/*
* For large offsets, set an absolute target time.
* As that might cause an underflow, for small offsets, set a relative
* target time.
* For very small offsets, spin.
*/
/*
* Note: last_wakeup _must never_ specify a time in the future after
* _xtimer_periodic_sleep returns.
* If this happens, last_wakeup may specify a time in the future when the
* next call to _xtimer_periodic_sleep is made, which in turn will trigger
* the overflow logic above and make the next timer fire too early, causing
* last_wakeup to point even further into the future, leading to a chain
* reaction.
*
* tl;dr Don't return too early!
*/
uint32_t offset = target - now;
DEBUG("xps, now: %9" PRIu32 ", tgt: %9" PRIu32 ", off: %9" PRIu32 "\n", now, target, offset);
if (offset < XTIMER_PERIODIC_SPIN) {
_xtimer_spin(offset);
}
else {
if (offset < XTIMER_PERIODIC_RELATIVE) {
/* NB: This will overshoot the target by the amount of time it took
* to get here from the beginning of xtimer_periodic_wakeup()
*
* Since interrupts are normally enabled inside this function, this time may
* be undeterministic. */
target = _xtimer_now() + offset;
}
mutex_lock(&mutex);
DEBUG("xps, abs: %" PRIu32 "\n", target);
_xtimer_set_absolute(&timer, target);
_xtimer_set64(&timer, offset, 0);
mutex_lock(&mutex);
}
out:
*last_wakeup = target;
*last_wakeup = now + offset;
}
#ifdef MODULE_CORE_MSG
@ -158,7 +119,7 @@ static inline void _setup_msg(xtimer_t *timer, msg_t *msg, kernel_pid_t target_p
void _xtimer_set_msg(xtimer_t *timer, uint32_t offset, msg_t *msg, kernel_pid_t target_pid)
{
_setup_msg(timer, msg, target_pid);
_xtimer_set(timer, offset);
_xtimer_set64(timer, offset, 0);
}
void _xtimer_set_msg64(xtimer_t *timer, uint64_t offset, msg_t *msg, kernel_pid_t target_pid)
@ -175,7 +136,7 @@ static void _setup_timer_msg(msg_t *m, xtimer_t *t)
m->type = MSG_XTIMER;
m->content.ptr = m;
t->target = t->long_target = 0;
t->offset = t->long_offset = 0;
}
/* Waits for incoming message or timeout. */
@ -220,7 +181,7 @@ void _xtimer_set_wakeup(xtimer_t *timer, uint32_t offset, kernel_pid_t pid)
timer->callback = _callback_wakeup;
timer->arg = (void*) ((intptr_t)pid);
_xtimer_set(timer, offset);
_xtimer_set64(timer, offset, 0);
}
void _xtimer_set_wakeup64(xtimer_t *timer, uint64_t offset, kernel_pid_t pid)
@ -248,12 +209,10 @@ static void _mutex_timeout(void *arg)
* If the xtimer spin is fixed in the future
* interups disable/restore can be removed
*/
unsigned irqstate = irq_disable();
unsigned int irqstate = irq_disable();
mutex_thread_t *mt = (mutex_thread_t *)arg;
if (mt->mutex->queue.next != MUTEX_LOCKED &&
mt->mutex->queue.next != NULL) {
mt->timeout = 1;
list_node_t *node = list_remove(&mt->mutex->queue,
(list_node_t *)&mt->thread->rq_entry);
@ -268,7 +227,6 @@ static void _mutex_timeout(void *arg)
sched_switch(mt->thread->priority);
return;
}
}
irq_restore(irqstate);
}

View File

@ -2,6 +2,7 @@
* Copyright (C) 2015 Kaspar Schleiser <kaspar@schleiser.de>
* 2016 Eistec AB
* 2018 Josua Arndt
* 2018 UC Berkeley
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
@ -17,6 +18,7 @@
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Josua Arndt <jarndt@ias.rwth-aachen.de>
* @author Hyung-Sin Kim <hs.kim@cs.berkeley.edu>
* @}
*/
@ -35,123 +37,74 @@
static volatile int _in_handler = 0;
static volatile uint32_t _long_cnt = 0;
#if XTIMER_MASK
volatile uint32_t _xtimer_high_cnt = 0;
#endif
static inline void xtimer_spin_until(uint32_t value);
volatile uint64_t _xtimer_current_time = 0;
static xtimer_t *timer_list_head = NULL;
static xtimer_t *overflow_list_head = NULL;
static xtimer_t *long_list_head = NULL;
static bool _lltimer_ongoing = false;
static void _add_timer_to_list(xtimer_t **list_head, xtimer_t *timer);
static void _add_timer_to_long_list(xtimer_t **list_head, xtimer_t *timer);
static void _shoot(xtimer_t *timer);
static void _remove(xtimer_t *timer);
static inline void _lltimer_set(uint32_t target);
static uint32_t _time_left(uint32_t target, uint32_t reference);
static inline void _update_short_timers(uint64_t *now);
static inline void _update_long_timers(uint64_t *now);
static inline void _schedule_earliest_lltimer(uint32_t now);
static void _timer_callback(void);
static void _periph_timer_callback(void *arg, int chan);
static inline int _this_high_period(uint32_t target);
static inline int _is_set(xtimer_t *timer)
{
return (timer->target || timer->long_target);
}
static inline void xtimer_spin_until(uint32_t target)
{
#if XTIMER_MASK
target = _xtimer_lltimer_mask(target);
#endif
while (_xtimer_lltimer_now() > target) {}
while (_xtimer_lltimer_now() < target) {}
}
void xtimer_init(void)
{
/* initialize low-level timer */
timer_init(XTIMER_DEV, XTIMER_HZ, _periph_timer_callback, NULL);
/* register initial overflow tick */
_lltimer_set(0xFFFFFFFF);
_schedule_earliest_lltimer(_xtimer_now());
}
static void _xtimer_now_internal(uint32_t *short_term, uint32_t *long_term)
uint32_t _xtimer_now(void)
{
uint32_t before, after, long_value;
/* loop to cope with possible overflow of _xtimer_now() */
do {
before = _xtimer_now();
long_value = _long_cnt;
after = _xtimer_now();
} while (before > after);
*short_term = after;
*long_term = long_value;
}
uint64_t _xtimer_now64(void)
{
uint32_t short_term, long_term;
_xtimer_now_internal(&short_term, &long_term);
return ((uint64_t)long_term << 32) + short_term;
return (uint32_t) _xtimer_now64();
}
void _xtimer_set64(xtimer_t *timer, uint32_t offset, uint32_t long_offset)
{
DEBUG(" _xtimer_set64() offset=%" PRIu32 " long_offset=%" PRIu32 "\n", offset, long_offset);
if (!long_offset) {
/* timer fits into the short timer */
_xtimer_set(timer, (uint32_t)offset);
}
else {
int state = irq_disable();
if (_is_set(timer)) {
_remove(timer);
}
_xtimer_now_internal(&timer->target, &timer->long_target);
timer->target += offset;
timer->long_target += long_offset;
if (timer->target < offset) {
timer->long_target++;
}
_add_timer_to_long_list(&long_list_head, timer);
irq_restore(state);
DEBUG("xtimer_set64(): added longterm timer (long_target=%" PRIu32 " target=%" PRIu32 ")\n",
timer->long_target, timer->target);
}
}
void _xtimer_set(xtimer_t *timer, uint32_t offset)
{
DEBUG("timer_set(): offset=%" PRIu32 " now=%" PRIu32 " (%" PRIu32 ")\n",
offset, xtimer_now().ticks32, _xtimer_lltimer_now());
if (!timer->callback) {
DEBUG("timer_set(): timer has no callback.\n");
DEBUG("_xtimer_set64(): timer has no callback.\n");
return;
}
xtimer_remove(timer);
if (offset < XTIMER_BACKOFF) {
if (!long_offset && offset < XTIMER_BACKOFF) {
/* timer fits into the short timer */
_xtimer_spin(offset);
_shoot(timer);
return;
}
/* time sensitive */
unsigned int state = irq_disable();
uint64_t now = _xtimer_now64();
timer->offset = offset;
timer->long_offset = long_offset;
timer->start_time = (uint32_t)now;
timer->long_start_time = (uint32_t)(now >> 32);
if (!long_offset) {
_add_timer_to_list(&timer_list_head, timer);
if (timer_list_head == timer) {
DEBUG("_xtimer_set64(): timer is new list head. updating lltimer.\n");
_schedule_earliest_lltimer((uint32_t)now);
}
}
else {
uint32_t target = _xtimer_now() + offset;
_xtimer_set_absolute(timer, target);
_add_timer_to_list(&long_list_head, timer);
DEBUG("_xtimer_set64(): added longterm timer.\n");
}
irq_restore(state);
}
static void _periph_timer_callback(void *arg, int chan)
@ -166,95 +119,56 @@ static void _shoot(xtimer_t *timer)
timer->callback(timer->arg);
}
static inline void _lltimer_set(uint32_t target)
static inline void _schedule_earliest_lltimer(uint32_t now)
{
uint32_t target;
if (_in_handler) {
return;
}
DEBUG("_lltimer_set(): setting %" PRIu32 "\n", _xtimer_lltimer_mask(target));
if (timer_list_head && timer_list_head->offset <= (_xtimer_lltimer_mask(0xFFFFFFFF)>>1)) {
/* schedule lltimer on next timer target time */
target = timer_list_head->start_time + timer_list_head->offset;
}
else if (!_lltimer_ongoing) {
/* schedule lltimer after max_low_level_time/2 to detect a cycle */
target = now + (_xtimer_lltimer_mask(0xFFFFFFFF)>>1);
}
else {
/* lltimer is already running */
return;
}
DEBUG("_schedule_earliest_lltimer(): setting %" PRIu32 "\n", _xtimer_lltimer_mask(target));
timer_set_absolute(XTIMER_DEV, XTIMER_CHAN, _xtimer_lltimer_mask(target));
_lltimer_ongoing = true;
}
int _xtimer_set_absolute(xtimer_t *timer, uint32_t target)
/**
* @brief compare two timers. return true if timerA expires earlier than or equal to timerB and false otherwise.
*/
static bool _timer_comparison(xtimer_t* timerA, xtimer_t* timerB)
{
uint32_t now = _xtimer_now();
int res = 0;
timer->next = NULL;
/* Ensure that offset is bigger than 'XTIMER_BACKOFF',
* 'target - now' will always be the offset no matter if target < or > now.
*
* This expects that target was not set too close to now and overrun now, so
* from setting target up until the call of '_xtimer_now()' above now has not
* become equal or bigger than target.
* This is crucial when using low CPU frequencies so reaching the '_xtimer_now()'
* call needs multiple xtimer ticks.
*
* '_xtimer_set()' and `_xtimer_periodic_wakeup()` ensure this by already
* backing off for small values. */
uint32_t offset = (target - now);
DEBUG("timer_set_absolute(): now=%" PRIu32 " target=%" PRIu32 " offset=%" PRIu32 "\n",
now, target, offset);
if (offset <= XTIMER_BACKOFF) {
/* backoff */
xtimer_spin_until(target);
_shoot(timer);
return 0;
if (timerA->long_offset < timerB->long_offset) {
return true;
}
unsigned state = irq_disable();
if (_is_set(timer)) {
_remove(timer);
if (timerA->long_offset == timerB->long_offset
/* this condition is needed for when timerA was already expired before timerB starts */
&& (timerA->start_time + timerA->offset < timerB->start_time
/* it is necessary to compare two offsets, instead of two absolute times */
|| timerA->start_time + timerA->offset - timerB->start_time <= timerB->offset)) {
return true;
}
timer->target = target;
timer->long_target = _long_cnt;
/* Ensure timer is fired in right timer period.
* Backoff condition above ensures that 'target - XTIMER_OVERHEAD` is later
* than 'now', also for values when now will overflow and the value of target
* is smaller then now.
* If `target < XTIMER_OVERHEAD` the new target will be at the end of this
* 32bit period, as `target - XTIMER_OVERHEAD` is a big number instead of a
* small at the beginning of the next period. */
target = target - XTIMER_OVERHEAD;
/* 32 bit target overflow, target is in next 32bit period */
if (target < now) {
timer->long_target++;
}
if ((timer->long_target > _long_cnt) || !_this_high_period(target)) {
DEBUG("xtimer_set_absolute(): the timer doesn't fit into the low-level timer's mask.\n");
_add_timer_to_long_list(&long_list_head, timer);
}
else {
if (_xtimer_lltimer_mask(now) >= target) {
DEBUG("xtimer_set_absolute(): the timer will expire in the next timer period\n");
_add_timer_to_list(&overflow_list_head, timer);
}
else {
DEBUG("timer_set_absolute(): timer will expire in this timer period.\n");
_add_timer_to_list(&timer_list_head, timer);
if (timer_list_head == timer) {
DEBUG("timer_set_absolute(): timer is new list head. updating lltimer.\n");
_lltimer_set(target);
}
}
}
irq_restore(state);
return res;
return false;
}
/**
* @brief add a timer to an ordered list of timers
*/
static void _add_timer_to_list(xtimer_t **list_head, xtimer_t *timer)
{
while (*list_head && (*list_head)->target <= timer->target) {
while (*list_head && _timer_comparison((*list_head), timer)) {
list_head = &((*list_head)->next);
}
@ -262,312 +176,139 @@ static void _add_timer_to_list(xtimer_t **list_head, xtimer_t *timer)
*list_head = timer;
}
static void _add_timer_to_long_list(xtimer_t **list_head, xtimer_t *timer)
{
while (*list_head
&& (((*list_head)->long_target < timer->long_target)
|| (((*list_head)->long_target == timer->long_target) && ((*list_head)->target <= timer->target)))) {
list_head = &((*list_head)->next);
}
timer->next = *list_head;
*list_head = timer;
}
static int _remove_timer_from_list(xtimer_t **list_head, xtimer_t *timer)
/**
* @brief remove a timer from an ordered list of timers
*/
static void _remove_timer_from_list(xtimer_t **list_head, xtimer_t *timer)
{
while (*list_head) {
if (*list_head == timer) {
*list_head = timer->next;
return 1;
timer->next = NULL;
return;
}
list_head = &((*list_head)->next);
}
return 0;
}
static void _remove(xtimer_t *timer)
{
if (timer_list_head == timer) {
uint32_t next;
timer_list_head = timer->next;
if (timer_list_head) {
/* schedule callback on next timer target time */
next = timer_list_head->target - XTIMER_OVERHEAD;
}
else {
next = _xtimer_lltimer_mask(0xFFFFFFFF);
}
_lltimer_set(next);
}
else {
if (!_remove_timer_from_list(&timer_list_head, timer)) {
if (!_remove_timer_from_list(&overflow_list_head, timer)) {
_remove_timer_from_list(&long_list_head, timer);
}
}
}
}
void xtimer_remove(xtimer_t *timer)
{
int state = irq_disable();
/* time sensitive since the target timer can be fired */
unsigned int state = irq_disable();
timer->offset = 0;
timer->long_offset = 0;
timer->start_time = 0;
timer->long_start_time = 0;
if (_is_set(timer)) {
_remove(timer);
}
_remove_timer_from_list(&timer_list_head, timer);
_remove_timer_from_list(&long_list_head, timer);
irq_restore(state);
}
static uint32_t _time_left(uint32_t target, uint32_t reference)
/**
* @brief update long timers' offsets and switch those that will expire in
* one short timer period to the short timer list
*/
static inline void _update_long_timers(uint64_t *now)
{
uint32_t now = _xtimer_lltimer_now();
xtimer_t *timer = long_list_head;
if (now < reference) {
return 0;
while (timer) {
uint32_t elapsed = (uint32_t)*now - timer->start_time;
if (timer->offset < elapsed) {
timer->long_offset--;
}
timer->offset -= elapsed;
timer->start_time = (uint32_t)*now;
timer->long_start_time = (uint32_t)(*now >> 32);
if (target > now) {
return target - now;
if (!timer->long_offset) {
assert(timer == long_list_head);
_remove_timer_from_list(&long_list_head, timer);
_add_timer_to_list(&timer_list_head, timer);
timer = long_list_head;
}
else {
return 0;
timer = timer->next;
}
}
}
static inline int _this_high_period(uint32_t target)
{
#if XTIMER_MASK
return (target & XTIMER_MASK) == _xtimer_high_cnt;
#else
(void)target;
return 1;
#endif
}
/**
* @brief compare two timers' target values, return the one with lower value.
*
* if either is NULL, return the other.
* if both are NULL, return NULL.
* @brief update short timers' offsets and fire those that are close to expiry
*/
static inline xtimer_t *_compare(xtimer_t *a, xtimer_t *b)
static inline void _update_short_timers(uint64_t *now)
{
if (a && b) {
return ((a->target <= b->target) ? a : b);
xtimer_t *timer = timer_list_head;
while (timer) {
assert(!timer->long_offset);
uint32_t elapsed = (uint32_t)*now - timer->start_time;
if (timer->offset < elapsed || timer->offset - elapsed < XTIMER_ISR_BACKOFF) {
assert(timer == timer_list_head);
/* make sure we don't fire too early */
if (timer->offset > elapsed) {
while(_xtimer_now() - timer->start_time < timer->offset) {}
}
/* advance list */
timer_list_head = timer->next;
/* make sure timer is recognized as being already fired */
timer->offset = 0;
timer->start_time = 0;
timer->long_start_time = 0;
timer->next = NULL;
/* fire timer */
_shoot(timer);
/* assign new head */
timer = timer_list_head;
/* update current_time */
*now = _xtimer_now();
}
else {
return (a ? a : b);
}
}
/**
* @brief merge two timer lists, return head of new list
*/
static xtimer_t *_merge_lists(xtimer_t *head_a, xtimer_t *head_b)
{
xtimer_t *result_head = _compare(head_a, head_b);
xtimer_t *pos = result_head;
while (1) {
head_a = head_a->next;
head_b = head_b->next;
if (!head_a) {
pos->next = head_b;
break;
}
if (!head_b) {
pos->next = head_a;
break;
}
pos->next = _compare(head_a, head_b);
pos = pos->next;
}
return result_head;
}
/**
* @brief parse long timers list and copy those that will expire in the current
* short timer period
*/
static void _select_long_timers(void)
{
xtimer_t *select_list_start = long_list_head;
xtimer_t *select_list_last = NULL;
/* advance long_list head so it points to the first timer of the next (not
* just started) "long timer period" */
while (long_list_head) {
if ((long_list_head->long_target <= _long_cnt) && _this_high_period(long_list_head->target)) {
select_list_last = long_list_head;
long_list_head = long_list_head->next;
}
else {
/* remaining long_list timers belong to later long periods */
break;
}
}
/* cut the "selected long timer list" at the end */
if (select_list_last) {
select_list_last->next = NULL;
}
/* merge "current timer list" and "selected long timer list" */
if (timer_list_head) {
if (select_list_last) {
/* both lists are non-empty. merge. */
timer_list_head = _merge_lists(timer_list_head, select_list_start);
}
else {
/* "selected long timer list" is empty, nothing to do */
}
}
else { /* current timer list is empty */
if (select_list_last) {
/* there's no current timer list, but a non-empty "selected long
* timer list". So just use that list as the new current timer
* list.*/
timer_list_head = select_list_start;
timer->offset -= elapsed;
timer->start_time = (uint32_t)*now;
timer->long_start_time = (uint32_t)(*now >> 32);
timer = timer->next;
}
}
}
/**
* @brief handle low-level timer overflow, advance to next short timer period
*/
static void _next_period(void)
{
#if XTIMER_MASK
/* advance <32bit mask register */
_xtimer_high_cnt += ~XTIMER_MASK + 1;
if (_xtimer_high_cnt == 0) {
/* high_cnt overflowed, so advance >32bit counter */
_long_cnt++;
}
#else
/* advance >32bit counter */
_long_cnt++;
#endif
/* swap overflow list to current timer list */
timer_list_head = overflow_list_head;
overflow_list_head = NULL;
_select_long_timers();
}
/**
* @brief main xtimer callback function
* @brief main xtimer callback function (called in an interrupt context)
*/
static void _timer_callback(void)
{
uint32_t next_target;
uint32_t reference;
uint64_t now;
_in_handler = 1;
_lltimer_ongoing = false;
now = _xtimer_now64();
DEBUG("_timer_callback() now=%" PRIu32 " (%" PRIu32 ")pleft=%" PRIu32 "\n",
xtimer_now().ticks32, _xtimer_lltimer_mask(xtimer_now().ticks32),
_xtimer_lltimer_mask(0xffffffff - xtimer_now().ticks32));
if (!timer_list_head) {
DEBUG("_timer_callback(): tick\n");
/* there's no timer for this timer period,
* so this was a timer overflow callback.
*
* In this case, we advance to the next timer period.
*/
_next_period();
reference = 0;
/* make sure the timer counter also arrived
* in the next timer period */
while (_xtimer_lltimer_now() == _xtimer_lltimer_mask(0xFFFFFFFF)) {}
}
else {
/* we ended up in _timer_callback and there is
* a timer waiting.
*/
/* set our period reference to the current time. */
reference = _xtimer_lltimer_now();
}
overflow:
/* check if next timers are close to expiring */
while (timer_list_head && (_time_left(_xtimer_lltimer_mask(timer_list_head->target), reference) < XTIMER_ISR_BACKOFF)) {
/* make sure we don't fire too early */
while (_time_left(_xtimer_lltimer_mask(timer_list_head->target), reference)) {}
/* pick first timer in list */
xtimer_t *timer = timer_list_head;
/* advance list */
timer_list_head = timer->next;
/* make sure timer is recognized as being already fired */
timer->target = 0;
timer->long_target = 0;
/* fire timer */
_shoot(timer);
}
/* possibly executing all callbacks took enough
* time to overflow. In that case we advance to
* next timer period and check again for expired
* timers.*/
/* check if the end of this period is very soon */
uint32_t now = _xtimer_lltimer_now() + XTIMER_ISR_BACKOFF;
if (now < reference) {
DEBUG("_timer_callback: overflowed while executing callbacks. %i\n",
timer_list_head != NULL);
_next_period();
/* wait till overflow */
while( reference < _xtimer_lltimer_now()){}
reference = 0;
goto overflow;
}
update:
/* update short timer offset and fire */
_update_short_timers(&now);
/* update long timer offset */
_update_long_timers(&now);
/* update current time */
now = _xtimer_now64();
if (timer_list_head) {
/* schedule callback on next timer target time */
next_target = timer_list_head->target - XTIMER_OVERHEAD;
/* make sure we're not setting a time in the past */
if (next_target < (_xtimer_now() + XTIMER_ISR_BACKOFF)) {
goto overflow;
}
uint32_t elapsed = (uint32_t)now - timer_list_head->start_time;
if (timer_list_head->offset < elapsed ||
timer_list_head->offset - elapsed < XTIMER_ISR_BACKOFF) {
goto update;
}
else {
/* there's no timer planned for this timer period */
/* schedule callback on next overflow */
next_target = _xtimer_lltimer_mask(0xFFFFFFFF);
uint32_t now = _xtimer_lltimer_now();
/* check for overflow again */
if (now < reference) {
_next_period();
reference = 0;
goto overflow;
}
else {
/* check if the end of this period is very soon */
if (_xtimer_lltimer_mask(now + XTIMER_ISR_BACKOFF) < now) {
/* spin until next period, then advance */
while (_xtimer_lltimer_now() >= now) {}
_next_period();
reference = 0;
goto overflow;
timer_list_head->offset -= elapsed;
timer_list_head->start_time = (uint32_t)now;
timer_list_head->long_start_time = (uint32_t)(now >> 32);
}
}
}
_in_handler = 0;
/* set low level timer */
_lltimer_set(next_target);
_schedule_earliest_lltimer((uint32_t)now);
}