1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00

Merge pull request #6521 from haukepetersen/rm_lpc_i2clma

cpu/drivers: remove deprecated lm75a+lpc2387 I2C drivers
This commit is contained in:
Martine Lenders 2017-02-07 10:27:26 +01:00 committed by GitHub
commit 2ef1f2e8f7
6 changed files with 0 additions and 1871 deletions

View File

@ -1 +0,0 @@
include $(RIOTBASE)/Makefile.base

View File

@ -1,943 +0,0 @@
/*
* i2c.c - implementation of the I2C interface for the LPC2387 chip.
* Copyright (C) 2013 Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @file
* @internal
* @brief The I2C interface drivers for the LPC2387 chip.
* The driver is full abstracted supporting all the i2c-interfaces
* of the LPC2387 chip. The user need only to give the requested
* i2c-interface and the transmission baudrate.
* The user can optionally give a master interrupt handler. If the
* user does not declare a handler, an appropriate interrupt is
* automatically registered for the specific i2c interface.
*
* @author Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
* @author Marco Ziegert <ziegert@inf.fu-berlin.de>
* @author Benjamin Aschenbrenner
* @version $Revision: 3858 $
*
* @note $Id: i2c.c 3858 2013-09-02 18:11:17 kasmi $
*/
#include "lpc23xx.h"
#include "lpc2387.h"
#include "i2c.h"
#include "VIC.h"
#include "irq.h"
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
volatile uint32_t i2c_master_state = I2C_IDLE;
volatile uint32_t i2c_slave_state = I2C_IDLE;
volatile uint32_t i2c_cmd;
volatile uint32_t i2c_mode;
volatile uint8_t i2c_master_buffer[I2C_BUFSIZE];
volatile uint32_t i2c_read_length;
volatile uint32_t i2c_write_length;
volatile uint32_t rd_index = 0;
volatile uint32_t wr_index = 0;
static void i2c_interface0_master_handler(void) __attribute__((interrupt(
"IRQ")));
static void i2c_interface1_master_handler(void) __attribute__((interrupt(
"IRQ")));
static void i2c_interface2_master_handler(void) __attribute__((interrupt(
"IRQ")));
bool i2c_initialize(uint8_t i2c_interface, uint32_t i2c_mode,
uint8_t slave_addr, uint32_t baud_rate, void *handler)
{
//puts("i2c_initialize begin...\n");
printf("i2cInterface = %d\n", i2c_interface);
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
//activate power for I2C2
i2c_active_power(i2c_interface);
//select I2C2 functionality for pins x.xx (SDAx) and x.xx (SCLx)
i2c_pin_select(i2c_interface);
// clear I2CCON register flags
i2c_clear_control_register(i2c_interface);
//set baud rate
i2c_set_baud_rate(i2c_interface, baud_rate);
//set slave mode
if (i2c_mode == I2CSLAVE) {
i2c_set_slave_mode(i2c_interface, slave_addr);
}
/* Install interrupt handler */
if (!i2c_irq_handler_register(i2c_interface, handler)) {
return false;
}
i2c_initial_master_transmitter_mode(i2c_interface);
//puts("...i2c_initialize ended\n");
return (true);
}
bool i2c_transaction(uint8_t i2c_interface)
{
//puts("i2cTransaction begin...\n");
i2c_master_state = I2C_IDLE;
rd_index = 0;
wr_index = 0;
if (i2c_start(i2c_interface) != true) {
i2c_stop(i2c_interface);
puts("i2cTransaction return false...\n");
return (false);
}
// puts("entering engine main loop\n");
while (1) {
if (i2c_master_state == DATA_NACK) {
i2c_stop(i2c_interface);
break;
}
}
// puts("...i2cTransaction ended\n");
return (true);
}
bool i2c_start(uint8_t i2c_interface)
{
// puts("i2c_start begin...\n");
uint32_t timeout = 0;
bool retVal = false;
/*--- Issue a start condition ---*/
switch (i2c_interface) {
case I2C0:
I20CONSET = I2CONSET_STA; /* Set Start flag */
break;
case I2C1_0:
case I2C1_1:
I21CONSET = I2CONSET_STA; /* Set Start flag */
break;
case I2C2:
I22CONSET = I2CONSET_STA; /* Set Start flag */
}
/*--- Wait until START transmitted ---*/
while (1) {
if (i2c_master_state == I2C_STARTED) {
retVal = true;
break;
}
if (timeout >= MAX_TIMEOUT) {
puts("timeout");
retVal = false;
break;
}
timeout++;
}
//puts("...i2c_start ended\n");
return (retVal);
}
bool i2c_stop(uint8_t i2c_interface)
{
//puts("i2c_stop begin...\n");
switch (i2c_interface) {
case I2C0:
I20CONSET = I2CONSET_STO; /* Set Stop flag */
I20CONCLR = I2CONCLR_SIC; /* Clear SI flag */
/*--- Wait for STOP detected ---*/
while (I20CONSET & I2CONSET_STO) {}
break;
case I2C1_0:
case I2C1_1:
I21CONSET = I2CONSET_STO; /* Set Stop flag */
I21CONCLR = I2CONCLR_SIC; /* Clear SI flag */
/*--- Wait for STOP detected ---*/
while (I21CONSET & I2CONSET_STO) {}
break;
case I2C2:
I22CONSET = I2CONSET_STO; /* Set Stop flag */
I22CONCLR = I2CONCLR_SIC; /* Clear SI flag */
/*--- Wait for STOP detected ---*/
while (I22CONSET & I2CONSET_STO) {}
}
// puts("...i2c_stop ended\n");
return true;
}
void i2c_active_power(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C0:
PCONP |= BIT7;
break;
case I2C1_0:
case I2C1_1:
PCONP |= BIT19;
break;
case I2C2:
PCONP |= BIT26;
}
}
//select I2C2 functionality for pins x.xx (SDAx) and x.xx (SCLx)
void i2c_pin_select(uint8_t i2cInterface)
{
switch (i2cInterface) {
case I2C0: // P0.27 SDA0, P0.28 SCL0
PINSEL1 |= BIT22 | BIT24;
PINSEL1 &= ~(BIT23 | BIT25);
break;
case I2C1_0: // P0.0 SDA1, P0.1 SCL1
PINSEL0 |= BIT0 | BIT1 | BIT2 | BIT3;
break;
case I2C1_1: // P0.19 SDA1, P0.20 SCL1
PINSEL1 |= BIT6 | BIT7 | BIT8 | BIT9;
break;
case I2C2: // P0.10 SDA2, P0.11 SCL2
PINSEL0 |= BIT21 | BIT23;
PINSEL0 &= ~(BIT20 | BIT22);
}
}
/*--- clearing of bits in the I2CON register ---*/
void i2c_clear_control_register(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C0:
I20CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
I2CONCLR_I2ENC;
break;
case I2C1_0:
case I2C1_1:
I21CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
I2CONCLR_I2ENC;
break;
case I2C2:
I22CONCLR = I2CONCLR_AAC | I2CONCLR_SIC | I2CONCLR_STAC |
I2CONCLR_I2ENC;
}
}
void i2c_set_baud_rate(uint8_t i2c_interface, uint32_t baud_rate)
{
uint32_t pclksel = 0;
uint32_t prescale = 0;
lpc2387_pclk_scale(CLOCK_CORECLOCK, baud_rate, &pclksel, &prescale);
switch (i2c_interface) {
case I2C0:
PCLKSEL0 &= ~(BIT14 | BIT15); //clear Bits
PCLKSEL0 |= pclksel << 14; //set bits
I20SCLL = prescale / 2;
I20SCLH = prescale / 2;
break;
case I2C1_0:
case I2C1_1:
PCLKSEL1 &= ~(BIT6 | BIT7);
PCLKSEL1 |= pclksel << 6;
I21SCLL = prescale / 2;
I21SCLH = prescale / 2;
break;
case I2C2:
PCLKSEL1 &= ~(BIT20 | BIT21);
PCLKSEL1 |= pclksel << 20;
I22SCLL = prescale / 2;
I22SCLH = prescale / 2;
}
}
bool i2c_irq_handler_register(uint8_t i2c_interface, void *handler)
{
bool successful = false;
switch (i2c_interface) {
case I2C0:
if (handler == NULL) {
successful = install_irq(I2C0_INT,
(void *) i2c_interface0_master_handler,
HIGHEST_PRIORITY);
}
else {
successful = install_irq(I2C0_INT, (void *) handler,
HIGHEST_PRIORITY);
}
break;
case I2C1_0:
case I2C1_1:
if (handler == NULL) {
successful = install_irq(I2C1_INT,
(void *) i2c_interface1_master_handler,
HIGHEST_PRIORITY);
}
else {
successful = install_irq(I2C1_INT, (void *) handler,
HIGHEST_PRIORITY);
}
break;
case I2C2:
if (handler == NULL) {
successful = install_irq(I2C2_INT,
(void *) i2c_interface2_master_handler,
HIGHEST_PRIORITY);
}
else {
successful = install_irq(I2C2_INT, (void *) handler,
HIGHEST_PRIORITY);
}
}
return successful;
}
void i2c_initial_master_transmitter_mode(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C0:
I20CONSET = I2CONSET_I2EN;
break;
case I2C1_0:
case I2C1_1:
I21CONSET = I2CONSET_I2EN;
break;
case I2C2:
I22CONSET = I2CONSET_I2EN;
}
}
bool i2c_read(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
uint8_t *rx_buff, uint8_t rx_buff_length)
{
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
i2c_write_length = 1;
i2c_read_length = rx_buff_length;
bool successful;
uint8_t readIndex = 3;
i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
i2c_master_buffer[1] = reg_addr;
i2c_master_buffer[2] = ((slave_addr << 1) & WRITE_ENABLE_BIT_MASK)
| READ_ENABLE_BIT_MASK;
successful = i2c_transaction(i2c_interface);
if (successful && (rx_buff != NULL) &&
(rx_buff_length < (I2C_BUFSIZE - readIndex))) {
memcpy(rx_buff, (const uint8_t *)(i2c_master_buffer + readIndex),
sizeof(uint8_t) * rx_buff_length);
return true;
}
else {
return false;
}
}
void i2c_clear_buffer(void *ptr, uint32_t size)
{
memset(ptr, 0, size);
}
bool i2c_write(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
uint8_t *tx_buff, uint8_t tx_buff_length)
{
//puts("[i2c.c/i2cWrite]: entered\n");
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
i2c_write_length = tx_buff_length + 1;
i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
i2c_master_buffer[1] = reg_addr;
if ((tx_buff != NULL) && tx_buff_length < (I2C_BUFSIZE - 2)) {
int32_t j = 0;
for (int32_t i = 2; i < tx_buff_length + 2; i++) {
i2c_master_buffer[i] = tx_buff[j];
j++;
//printf("I2CMasterBuffer[%d] = %d\n", i, I2CMasterBuffer[i]);
}
return i2c_transaction(i2c_interface);
}
else {
puts("[i2c.c/i2cWrite]: Invalid buffer or invalid write buffer size\n");
return false;
}
}
//burst mode, the first element in the array
bool i2c_trans_receive(uint8_t i2c_interface, uint8_t slave_addr,
uint8_t *tx_buff, uint8_t tx_buff_length,
uint8_t *rx_buff, uint8_t rx_buff_length)
{
puts("[i2c.c/i2cTransReceive]: entered\n");
i2c_clear_buffer((uint8_t *) i2c_master_buffer,
I2C_BUFSIZE * sizeof(uint8_t));
i2c_write_length = tx_buff_length;
i2c_read_length = rx_buff_length;
if (tx_buff != NULL && (tx_buff_length > 0)) {
int32_t read_index = 0;
i2c_master_buffer[0] = (slave_addr << 1) & WRITE_ENABLE_BIT_MASK;
for (int32_t i = 1; i < tx_buff_length + 1; i++) {
if (i < I2C_BUFSIZE) {
i2c_master_buffer[i] = tx_buff[i - 1];
}
}
//enable I2C to read
if ((rx_buff_length > 0) && (i < I2C_BUFSIZE)) {
i2c_master_buffer[i] = ((slave_addr << 1) & WRITE_ENABLE_BIT_MASK)
| READ_ENABLE_BIT_MASK;
read_index = i + 1;
}
bool successful = i2c_transaction(i2c_interface);
if (successful && (rx_buff != NULL) && (rx_buff_length > 0)) {
memcpy(rx_buff, (const uint8_t *)(i2c_master_buffer + read_index),
sizeof(uint8_t) * rx_buff_length);
return true;
}
else {
return false;
}
}
else {
puts(
"[i2c.c/i2cRead]: the txBuff is not valid or has not a valid \
length value !\n");
return false;
}
}
/**
* @brief The interrupt handler for the I2C0 interface.
* It deals only with the master mode.
*
*/
void i2c_interface0_master_handler(void) //__irq
{
//puts("entering I2C handler function\n");
uint8_t state_value;
/* this handler deals with master read and master write only */
state_value = I20STAT;
//IENABLE; /* handles nested interrupt */
//irq_enable();
switch (state_value) {
case 0x08: /* A Start condition is issued. */
//puts("A Start condition is issued\n");
I20DAT = i2c_master_buffer[0];
//printf("I22DAT = %lu\n", I22DAT);
I20CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_STARTED;
break;
case 0x10: /* A repeated started is issued */
//puts("A repeated Start is issued\n");
// if ( I2CCmd == L3DG420_WHO_AM_I)
// {
// I22DAT = I2CMasterBuffer[2];
// }
I20DAT = i2c_master_buffer[2];
I20CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_RESTARTED;
break;
case 0x18: /* Regardless, it's a ACK */
//puts("got an Ack\n");
if (i2c_master_state == I2C_STARTED) {
I20DAT = i2c_master_buffer[1 + wr_index];
wr_index++;
i2c_master_state = DATA_ACK;
}
I20CONCLR = I2CONCLR_SIC;
break;
case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
case 0x30:
//puts("Data byte has been transmitted\n");
if (wr_index != i2c_write_length) {
// this should be the last one
I20DAT = i2c_master_buffer[1 + wr_index];
if (wr_index != i2c_write_length) {
i2c_master_state = DATA_ACK;
}
else {
i2c_master_state = DATA_NACK;
I20CONSET = I2CONSET_STO; /* Set Stop flag */
if (i2c_read_length != 0) {
I20CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
}
wr_index++;
}
else {
if (i2c_read_length != 0) {
I20CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
else {
i2c_master_state = DATA_NACK;
I20CONSET = I2CONSET_STO; /* Set Stop flag */
}
}
I20CONCLR = I2CONCLR_SIC;
break;
case 0x40: /* Master Receive, SLA_R has been sent */
//puts("Master Receive, SLA_R has been sent!\n");
if (i2c_read_length >= 2) {
I20CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
I20CONCLR = I2CONCLR_SIC;
break;
// Data byte has been received, regardless following ACK or NACK
case 0x50:
case 0x58:
//puts("Data received\n");
i2c_master_buffer[3 + rd_index] = I20DAT;
rd_index++;
if (rd_index < (i2c_read_length - 1)) {
i2c_master_state = DATA_ACK;
I20CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
else {
I20CONCLR = I2CONCLR_AAC; /* NACK after data is received */
}
if (rd_index == i2c_read_length) {
rd_index = 0;
i2c_master_state = DATA_NACK;
}
I20CONCLR = I2CONCLR_SIC;
break;
case 0x20: /* regardless, it's a NACK */
case 0x48:
I20CONCLR = I2CONCLR_SIC;
i2c_master_state = DATA_NACK;
break;
case 0x38: /*
* Arbitration lost, in this example, we don't
* deal with multiple master situation
**/
//puts("Arbritration lost!\n");
default:
I20CONCLR = I2CONCLR_SIC;
break;
}
//IDISABLE;
//irq_disable();
//puts("leave I2C handler function\n");
VICVectAddr = 0; /* Acknowledge Interrupt */
}
/**
* @brief The interrupt handler for the I2C1 interface.
* It deals only with the master mode.
*
*/
void i2c_interface1_master_handler(void) //__irq
{
//puts("entering I2C handler function\n");
uint8_t state_value;
/* this handler deals with master read and master write only */
state_value = I21STAT;
//IENABLE; /* handles nested interrupt */
//irq_enable();
switch (state_value) {
case 0x08: /* A Start condition is issued. */
//puts("A Start condition is issued\n");
I21DAT = i2c_master_buffer[0];
//printf("I22DAT = %lu\n", I22DAT);
I21CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_STARTED;
break;
case 0x10: /* A repeated started is issued */
//puts("A repeated Start is issued\n");
// if ( I2CCmd == L3DG420_WHO_AM_I)
// {
// I22DAT = I2CMasterBuffer[2];
// }
I21DAT = i2c_master_buffer[2];
I21CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_RESTARTED;
break;
case 0x18: /* Regardless, it's a ACK */
//puts("got an Ack\n");
if (i2c_master_state == I2C_STARTED) {
I21DAT = i2c_master_buffer[1 + wr_index];
wr_index++;
i2c_master_state = DATA_ACK;
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
case 0x30:
//puts("Data byte has been transmitted\n");
if (wr_index != i2c_write_length) {
// this should be the last one
I21DAT = i2c_master_buffer[1 + wr_index];
if (wr_index != i2c_write_length) {
i2c_master_state = DATA_ACK;
}
else {
i2c_master_state = DATA_NACK;
I21CONSET = I2CONSET_STO; /* Set Stop flag */
if (i2c_read_length != 0) {
I21CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
}
wr_index++;
}
else {
if (i2c_read_length != 0) {
I21CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
else {
i2c_master_state = DATA_NACK;
I21CONSET = I2CONSET_STO; /* Set Stop flag */
}
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x40: /* Master Receive, SLA_R has been sent */
//puts("Master Receive, SLA_R has been sent!\n");
if (i2c_read_length >= 2) {
I21CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x50: /*
* Data byte has been received, regardless following ACK or
* NACK
**/
case 0x58:
//puts("Data received\n");
i2c_master_buffer[3 + rd_index] = I21DAT;
rd_index++;
if (rd_index < (i2c_read_length - 1)) {
i2c_master_state = DATA_ACK;
I21CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
else {
I21CONCLR = I2CONCLR_AAC; /* NACK after data is received */
}
if (rd_index == i2c_read_length) {
rd_index = 0;
i2c_master_state = DATA_NACK;
}
I21CONCLR = I2CONCLR_SIC;
break;
case 0x20: /* regardless, it's a NACK */
case 0x48:
I21CONCLR = I2CONCLR_SIC;
i2c_master_state = DATA_NACK;
break;
case 0x38: /*
* Arbitration lost, in this example, we don't
* deal with multiple master situation
**/
//puts("Arbritration lost!\n");
default:
I21CONCLR = I2CONCLR_SIC;
break;
}
//IDISABLE;
//irq_disable();
//puts("leave I2C handler function\n");
VICVectAddr = 0; /* Acknowledge Interrupt */
}
/**
* @brief The interrupt handler for the I2C2 interface.
* It deals only with the master mode.
*
*/
void i2c_interface2_master_handler(void) //__irq
{
//puts("entering I2C handler function\n");
uint8_t state_value;
/* this handler deals with master read and master write only */
state_value = I22STAT;
//IENABLE; /* handles nested interrupt */
//irq_enable();
switch (state_value) {
case 0x08: /* A Start condition is issued. */
//puts("A Start condition is issued\n");
I22DAT = i2c_master_buffer[0];
//printf("I22DAT = %lu\n", I22DAT);
I22CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_STARTED;
break;
case 0x10: /* A repeated started is issued */
//puts("A repeated Start is issued\n");
// if ( I2CCmd == L3DG420_WHO_AM_I)
// {
// I22DAT = I2CMasterBuffer[2];
// }
I22DAT = i2c_master_buffer[2];
I22CONCLR = (I2CONCLR_SIC | I2CONCLR_STAC);
i2c_master_state = I2C_RESTARTED;
break;
case 0x18: /* Regardless, it's a ACK */
//puts("got an Ack\n");
if (i2c_master_state == I2C_STARTED) {
I22DAT = i2c_master_buffer[1 + wr_index];
wr_index++;
i2c_master_state = DATA_ACK;
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x28: /* Data byte has been transmitted, regardless ACK or NACK */
case 0x30:
//puts("Data byte has been transmitted\n");
if (wr_index != i2c_write_length) {
// this should be the last one
I22DAT = i2c_master_buffer[1 + wr_index];
if (wr_index != i2c_write_length) {
i2c_master_state = DATA_ACK;
}
else {
i2c_master_state = DATA_NACK;
I22CONSET = I2CONSET_STO; /* Set Stop flag */
if (i2c_read_length != 0) {
I22CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
}
wr_index++;
}
else {
if (i2c_read_length != 0) {
I22CONSET = I2CONSET_STA; /* Set Repeated-start flag */
i2c_master_state = I2C_REPEATED_START;
}
else {
i2c_master_state = DATA_NACK;
I22CONSET = I2CONSET_STO; /* Set Stop flag */
}
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x40: /* Master Receive, SLA_R has been sent */
//puts("Master Receive, SLA_R has been sent!\n");
if (i2c_read_length >= 2) {
I22CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x50: /*
* Data byte has been received, regardless following ACK or
* NACK
**/
case 0x58:
//puts("Data received\n");
i2c_master_buffer[3 + rd_index] = I22DAT;
rd_index++;
if (rd_index < (i2c_read_length - 1)) {
i2c_master_state = DATA_ACK;
I22CONSET = I2CONSET_AA; /* assert ACK after data is received */
}
else {
I22CONCLR = I2CONCLR_AAC; /* NACK after data is received */
}
if (rd_index == i2c_read_length) {
rd_index = 0;
i2c_master_state = DATA_NACK;
}
I22CONCLR = I2CONCLR_SIC;
break;
case 0x20: /* regardless, it's a NACK */
case 0x48:
I22CONCLR = I2CONCLR_SIC;
i2c_master_state = DATA_NACK;
break;
case 0x38: /*
* Arbitration lost, in this example, we don't
* deal with multiple master situation
**/
//puts("Arbritration lost!\n");
default:
I22CONCLR = I2CONCLR_SIC;
break;
}
//IDISABLE;
//irq_disable();
//puts("leave I2C handler function\n");
VICVectAddr = 0; /* Acknowledge Interrupt */
}
void i2c_set_slave_mode(uint8_t i2c_interface, uint8_t slave_addr)
{
switch (i2c_interface) {
case I2C0:
I20ADR = slave_addr;
break;
case I2C1_0:
case I2C1_1:
I21ADR = slave_addr;
break;
case I2C2:
I22ADR = slave_addr;
}
}
void i2c_enable_pull_up_resistor(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C1_0: // P0.0 SDA1, P0.1 SCL1
puts("The on-chip pull-up resistor is enabled for the I2C1_0");
PINMODE0 &= ~(BIT0 | BIT1 | BIT2 | BIT3);
break;
case I2C1_1: // P0.19 SDA1, P0.20 SCL1
puts("The on-chip pull-up resistor is enabled for the I2C1_1");
PINMODE1 &= ~(BIT6 | BIT7 | BIT8 | BIT9);
break;
case I2C2: // P0.10 SDA2, P0.11 SCL2
puts("The on-chip pull-up resistor is enabled for the I2C2");
PINMODE0 &= ~(BIT20 | BIT21 | BIT22 | BIT23);
//PINMODE0 &= ~(BIT20 | BIT22);
}
}
void i2c_disable_pull_up_resistor(uint8_t i2c_interface)
{
switch (i2c_interface) {
case I2C1_0: // P0.0 SDA1, P0.1 SCL1
puts("The on-chip pull-up resistor is disbled for the I2C1_0");
PINMODE0 &= ~(BIT0 | BIT2);
PINMODE0 |= (BIT1 | BIT3);
break;
case I2C1_1: // P0.19 SDA1, P0.20 SCL1
puts("The on-chip pull-up resistor is disabled for the I2C1_1");
PINMODE1 &= ~(BIT6 | BIT8);
PINMODE1 |= (BIT7 | BIT9);
break;
case I2C2: // P0.10 SDA2, P0.11 SCL2
puts("The on-chip pull-up resistor is disbled for the I2C2");
PINMODE0 &= ~(BIT20 | BIT22);
PINMODE1 |= (BIT21 | BIT23);
}
}

View File

@ -1,337 +0,0 @@
/*
* i2c.h - Definitions for the I2C interface and the functions
* for the LPC2387 chip.
*
* Copyright (C) 2013 Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @file
* @internal
* @brief The I2C interface driver definitions for the LPC2387 chip.
* The driver is full abstracted supporting all the i2c-interfaces
* of the LPC2387 chip. The user need only to give the requested
* i2c-interface and the transmission baudrate. The user can
* optionally give its own master interrupt handler. If the user
* does not declare a handler, an appropriate interrupt is
* automatically registered for the specific i2c-interface.
*
* @author Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
* @author Marco Ziegert <ziegert@inf.fu-berlin.de>
* @author Benjamin Aschenbrenner
* @version $Revision: 3857 $
*
* @note $Id: i2c.h 3857 2013-09-02 18:11:27 kasmi $
*/
#ifndef I2C_H
#define I2C_H
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define I2C_BUFSIZE 0x23
#define MAX_TIMEOUT 0x00FFFFFF
#define I2CMASTER 0x01
#define I2CSLAVE 0x02
//define slave addresses and data registers
#define RD_BIT 0x01
#define AUTO_INC_BIT 0x80
#define WRITE_ENABLE_BIT_MASK 0XFE
#define READ_ENABLE_BIT_MASK 0x1
#define I2C_IDLE 0
#define I2C_STARTED 1
#define I2C_RESTARTED 2
#define I2C_REPEATED_START 3
#define DATA_ACK 4
#define DATA_NACK 5
#define I2CONSET_I2EN 0x00000040 /* I2C Control Set Register */
#define I2CONSET_AA 0x00000004
#define I2CONSET_SI 0x00000008
#define I2CONSET_STO 0x00000010
#define I2CONSET_STA 0x00000020
#define I2CONCLR_AAC 0x00000004 /* I2C Control clear Register */
#define I2CONCLR_SIC 0x00000008
#define I2CONCLR_STAC 0x00000020
#define I2CONCLR_I2ENC 0x00000040
#define I2DAT_I2C 0x00000000 /* I2C Data Reg */
#define I2ADR_I2C 0x00000000 /* I2C Slave Address Reg */
#define I2SCLH_SCLH 45 /* I2C SCL Duty Cycle High Reg */
#define I2SCLL_SCLL 45 /* I2C SCL Duty Cycle Low Reg */
//I2C interfaces
#define I2C0 0 // P0.27 SDA0, P0.28 SCL0
#define I2C1_0 1 // P0.0 SDA1, P0.1 SCL1
#define I2C1_1 2 // P0.19 SDA1, P0.20 SCL1
#define I2C2 3 // P0.10 SDA2, P0.11 SCL2
/* Functions definitions */
/**
* @brief Initialize the I2C-Interface with the appropriate operation
* mode, baud rate and other parameter.
* The user can optionally give a master interrupt handler. If the
* user does not declare a handler, an appropriate interrupt is
* automatically registered for the specific i2c interface.
*
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
* @param[in] i2c_mode the operating mode.
* @param[in] slave_addr the slave address.
* @param[in] baud_rate the baud rate.
* @param[in] handler the I2C2 Interrupt handler (optional); by giving
* a NULL as parameter, an appropriate interrupt is
* automatically selected.
*
* @return true if the I2C interrupt handler was installed correctly, otherwise
* false.
*/
bool i2c_initialize(uint8_t i2c_interface, uint32_t i2c_mode,
uint8_t slave_addr, uint32_t baud_rate, void *handler);
/**
* @brief Read from an appropriate slave device over the I2C-Interface.
* The read values are stored in a buffer, which it is handed to
* the function.
*
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
* @param[in] slave_addr the slave address
* @param[in] reg_addr a register address, which is residing in the
* slave device.
* @param[out] rx_buff a pointer to a receive buffer.
* @param[in] rx_buff_length the number of receiving bytes resp.
* the receive-buffer length.
*
* @return true if the read transaction is successfully completed, otherwise
* false.
*/
bool i2c_read(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
uint8_t *rx_buff, uint8_t rx_buff_length);
/**
* @brief Write to an appropriate slave device over the I2C-Interface.
* The values are stored in a buffer, which it is handed to the
* function.
*
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
* @param[in] slave_addr the slave address
* @param[in] reg_addr a register address, which is residing in the
* slave device.
* @param[in] tx_buff pointer to a transmitting buffer.
* @param[in] tx_buff_length the number of transmitting bytes resp.
* the transmit-buffer length.
*
* @return true if the write transaction is successfully completed, otherwise
* false.
*/
bool i2c_write(uint8_t i2c_interface, uint8_t slave_addr, uint8_t reg_addr,
uint8_t *tx_buff, uint8_t tx_buff_length);
/**
* @brief Simultaneous sending and receiving to/from the I2C-Interface.
* The sending/receiving bytes are stored in two buffers, which are
* handed to the function.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
* @param[in] slave_addr slave address
* @param[in] tx_buff pointer to a sending buffer.
* @param[in] tx_buff_length the number of sending bytes resp.
* the send-buffer length.
* @param[out] rx_buff pointer to a receive buffer.
* @param[in] rx_buff_length the number of receiving bytes resp.
* the receive-buffer length.
*
* @return true if the write/receive transaction are successfully completed,
* otherwise false.
*/
bool i2c_trans_receive(uint8_t i2c_interface, uint8_t slave_addr,
uint8_t *tx_buff, uint8_t tx_buff_length,
uint8_t *rx_buff, uint8_t rx_buff_length);
/**
* @brief Enable the appropriate I2C interface.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
*
*/
void i2c_active_power(uint8_t i2c_interface);
/**
* @brief Select the appropriate pins for the I2C interface.
* It selects the respective Serial Data Line (SDAx) and Serial
* Clock (SCLx).
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
*
*/
void i2c_pin_select(uint8_t i2c_interface);
/**
* @brief Clear the I2C control register.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
*
*/
void i2c_clear_control_register(uint8_t i2c_interface);
/**
* @brief Set the I2C baud rate.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
* @param[in] baud_rate the baud rate.
*
*/
void i2c_set_baud_rate(uint8_t i2c_interface, uint32_t baud_rate);
/**
* @brief Register an interrupt handler for the I2C interface.
* The user can register his own irq-handler.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
* @param[in] handler the i2c irq-handler.
*
* @return true if the the interrupt handler is successfully registered,
* otherwise false.
*
*/
bool i2c_irq_handler_register(uint8_t i2c_interface, void *handler);
/**
* @brief This routine complete a I2C transaction from start to stop
* conditions.
* All the intermitten steps are handled in the interrupt handler.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
*
* @return false if the start condition can never be generated and timed out,
* otherwise true.
*
*/
bool i2c_transaction(uint8_t i2c_interface);
/**
* @brief Enable master transmitter mode for the appropriate
* i2c-interface.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
*
*/
void i2c_initial_master_transmitter_mode(uint8_t i2c_interface);
/**
* @brief Set slave mode for the appropriate i2c-interface.
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
* @param[in] slave_addr the slave address.
*
*/
void i2c_set_slave_mode(uint8_t i2c_interface, uint8_t slave_addr);
/**
* @brief Clear a number of bytes in a buffer.
*
* @param[in] ptr pointer to a buffer
* @param[in] size the number of bytes, that must be cleared.
*
*/
void i2c_clear_buffer(void *ptr, uint32_t size);
/**
* @brief Create a I2C start condition.
*
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
*
* @return false if the start condition is timed out, otherwise true.
*
*/
bool i2c_start(uint8_t i2c_interface);
/**
* @brief Set a I2C stop condition.
* If the function never exit, it's a fatal bus error
*
*
* @param[in] i2c_interface the i2c interface, several interfaces can be
* selected: i2c0, i2c1 and i2c2.
*
* @return true if the stop condition is issued, otherwise it never returns.
*
*/
bool i2c_stop(uint8_t i2c_interface);
/**
* @brief Enable the on-chip pull-up resistor for the appropriate
* i2c-interface.
*
* @param[in] i2c_interface the i2c interface, only the i2c1 and the
* i2c2-interfaces are supported. The pin mode
* cannot be selected for pins P0[27] to P0[31].
* Pins P0[27] and P0[28] are dedicated I2C
* open-drain pins without pull-up/down.
*/
void i2c_enable_pull_up_resistor(uint8_t i2c_interface);
/**
* @brief Disable the on-chip pull-up resistor for the appropriate
* i2c-interface.
*
* @param[in] i2c_interface the i2c interface, only the i2c1 and the
* i2c2-interfaces are supported. The pin mode
* cannot be selected for pins P0[27] to P0[31].
* Pins P0[27] and P0[28] are dedicated I2C
* open-drain pins without pull-up/down.
*/
void i2c_disable_pull_up_resistor(uint8_t i2c_interface);
#ifdef __cplusplus
}
#endif
#endif /* I2C_H */

View File

@ -1,278 +0,0 @@
/*
* Copyright (C) 2013 Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup drivers_lm75a LM75A
* @ingroup drivers_sensors
* @brief Driver for the LM75A digital temperature sensor and thermal watchdog
*
* The connection between the MCU and the LM75A is based on the i2c-interface.
*
* @{
*
* @file
* @internal
* @brief Definitions of the LM75A temperature sensor driver.
*
* The connection between the LM75A and the MCU is based on the I2C-interface.
*
* @author Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
*/
#ifndef LM75A_H
#define LM75A_H
#include <stdint.h>
#include <math.h>
#include "i2c.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @name LM75A register addresses
* @{
*/
#define LM75A_ADDR 0x48
#define LM75A_TEMPERATURE_REG 0x0
#define LM75A_CONFIG_REG 0x1
#define LM75A_THYST_REG 0x2
#define LM75A_OVER_TEMP_REG 0x3
/** @} */
/**
* @brief Define the used I2C Interface
*/
//#define LM75A_I2C_INTERFACE I2C0 // P0.27 SDA0, P0.28 SCL0
#define LM75A_I2C_INTERFACE I2C1_0 // P0.0 SDA1, P0.1 SCL1
//#define LM75A_I2C_INTERFACE I2C1_1 // P0.19 SDA1, P0.20 SCL1
//#define LM75A_I2C_INTERFACE I2C2 // P0.10 SDA2, P0.11 SCL2
/**
* @brief LM75A operation modes
*/
enum OPERATION_MODES {
LM75A_NORMAL_OPERATION_MODE,
LM75A_SHUTDOWN_MODE,
LM75A_COMPARATOR_MODE,
LM75A_INTERRUPT_MODE
};
/**
* @name Common definitions for LMA75A
* @{
*/
#define LM75A_BIT0 0x0
#define LM75A_BIT1 0x1
#define LM75A_BIT2 0x2
#define LM75A_BIT3 0x3
#define LM75A_BIT4 0x4
#define LM75A_BIT5 0x5
#define LM75A_BIT6 0x6
#define LM75A_BIT7 0x7
#define LM75A_BIT8 0x8
#define LM75A_BIT9 0x9
#define LM75A_BIT10 0xA
#define LM75A_BIT15 0xF
#define LM75A_MOST_SIG_BYTE_MASK 0xFF00
#define LM75A_LEAST_SIG_BYTE_MASK 0x00FF
#define LM75A_DATA_BITS_MASK 0x07FF
#define LM75A_SIGN_BIT_MASK (1<<LM75A_BIT10)
#define LM75A_LSB_MASK 0x1
#define LM75A_EXTINT_MODE 0x1
/** @} */
/**
* @name LM75A configuration register
* @{
*/
#define LM75A_ACTIVE_LOW 0
#define LM75A_ACTIVE_HIGH 1
#define LM75A_DEFAULT_CONFIG_VALUE 0
/** @} */
/**
* @brief LM75A default values
*/
enum DEFAULT_VALUES {
LM75A_DEFAULT_TOS = 80,
LM75A_DEFAULT_THYST = 75,
LM75A_DEFAULT_OPERATION = LM75A_NORMAL_OPERATION_MODE,
LM75A_DEFAULT_MODE = LM75A_COMPARATOR_MODE,
LM75A_DEFAULT_POLARITY = LM75A_ACTIVE_LOW,
LM75A_DEFAULT_FAULT_NUM = 1
};
/**
* @name define inter-threads messages
* @{
*/
#define LM75A_EXIT_MSG 0
#define LM75A_SAMPLING_MSG 1
#define LM75A_SLEEP_MSG 2
#define LM75A_WEAKUP_MSG 3
/** @} */
/**
* @brief Set the over-temperature shutdown threshold (TOS).
*
* @param[in] tos the TOS value.
*
*/
void lm75A_set_over_temperature(float_t tos);
/**
* @brief Set the hysteresis temperature.
*
* @param[in] thsyt the hysteresis value.
*
*/
void lm75A_set_hysteresis_temperature(float_t thsyt);
/**
* @brief Set various operation modes of the temperature sensor.
* The LM75A provide four modes: normal, comparator, interrupt,
* and the shutdown mode.
* All these modes are defined in the lm75a-temp-sensor.h
*
* @param[in] op_mode the operation mode value: the normal, shutdown,
* comparator, or interrupt mode.
*
*/
void lm75A_set_operation_mode(uint8_t op_mode);
/**
* @brief Get the content of the configuration register.
*
* @return the configuration register value.
*
*/
uint8_t lm75A_get_config_reg(void);
/**
* @brief Get the adjusted hysteresis temperature.
*
* @return the content of the hysteresis register.
*
*/
float_t lm75A_get_hysteresis_temperature(void);
/**
* @brief Get the adjusted over-temperature shutdown threshold (TOS).
*
* @return the content of the TOS-register.
*
*/
float_t lm75A_get_over_temperature(void);
/**
* @brief Get the ambient temperature which is measured from the
* LM75A sensor.
*
* @return the content of the temperature register.
*
*/
float_t lm75A_get_ambient_temperature(void);
/**
* @brief Set the LM75A sensor in the initial state.
* The temperature sensor has the following values in this state:
* config_register = 0; hyst_register = 75; the tos_reg = 80.
*
*/
void lm75A_reset(void);
/**
* @brief Start a continuous sampling of the temperature values.
* This function prints the values of all registers over
* the rs232 interface.
*
* @param[in] extern_interrupt_task pointer to an external task handler that
* is executed, if an external interrupt
* occurrs left. This is an optional
* parameter therefore NULL is a legal value.
*/
void lm75A_start_sensor_sampling(void (*extern_interrupt_task)(void));
/**
* @brief Register an interrupt handler for the external interrupt.
* Only the port0 and port2 are supported.
*
* @param[in] port port number.
* @param[in] pin_bit_mask pin number in form of a bit mask: Pin0 --> BIT0,
* Pin1 --> BIT1, Pin2 --> BIT2 = 2^2 = 4
* @param[in] flags define if the interrupt is generated on rising
* or falling edge (#GPIOINT_RISING_EDGE,
* #GPIOINT_FALLING_EDGE).
* @param[in] handler pointer to an interrupt handler.
*
* @return true if the the external interrupt handler is successfully
* registered, otherwise false.
*/
bool lm75A_ext_irq_handler_register(int32_t port, uint32_t pin_bit_mask,
int32_t flags, void *handler);
/**
* @brief Initialize the LM75A temperature sensor.
* The baud rate and the handler for the external interrupt can be
* initialized. The external interrupt handler is optional, if no
* handler is available, the NULL-value can be entered.
* The hysteresis and the over-temperature are displayed before and
* after a rest action is performed. After this the LM7A sensor is
* set in the interrupt or the comparator mode.
*
* @param[in] i2c_interface the i2c interface, several interfaces
* can be selected: i2c0, i2c1 and i2c2.
* @param[in] baud_rate the baud rate.
* @param[in] external_interr_handler pointer to a handler for the external
* interrupt.
*
* @return true if the I2C interface and the external interrupt handler are
* successfully initialized, otherwise false.
*/
bool lm75A_init(uint8_t i2c_interface, uint32_t baud_rate,
void *external_interr_handler);
/**
* @brief Register the external interrupt handler for the over-temperature
* shutdown output.
*
* @param[in] handler pointer to a handler for the external interrupts.
*
* @return true if the the external interrupt handler is successfully
* registered, otherwise false.
*/
bool lm75A_external_interrupt_register(void *handler);
/**
* @brief Alarm the sensor sampling task about an external interrupt.
*
* @param[in] b is true if an external interrupt is occurred, otherwise false.
*
*/
void lm75A_set_in_alarm(bool b);
#ifdef __cplusplus
}
#endif
/** @} */
#endif /* LM75A_H */

View File

@ -1 +0,0 @@
include $(RIOTBASE)/Makefile.base

View File

@ -1,311 +0,0 @@
/*
* lm75a-temp-sensor.c - Driver for the LM75A temperature sensor based on the
* i2c interface.
*
* Copyright (C) 2013 Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
*/
/**
* @file
* @internal
* @brief Driver for the LM75A temperature sensor.
* The communication between the LM75A and the MCU is
* based on the i2c interface.
*
* @author Zakaria Kasmi <zkasmi@inf.fu-berlin.de>
* @version $Revision: 3855 $
*
* @note $Id: lm75a-temp-sensor.c 3855 2013-09-05 13:53:49 kasmi $
*/
#include <stdlib.h>
#include <limits.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <math.h>
#include "msg.h"
#include "thread.h"
#include "lpc2387.h"
#include "gpioint.h"
#include "i2c.h"
#include "lm75a-temp-sensor.h"
#include "board.h"
#include "xtimer.h"
//declaration as volatile is important, otherwise no interrupt is triggered.
volatile bool my_alarm = false;
static uint16_t get_2s_complement(uint16_t num)
{
return ~(num) + 1;
}
//Write: MC --> Sensor
static void to_bytes(float_t f, uint8_t *buff)
{
int32_t i = (int32_t)(f * 2);
buff[0] = (uint8_t)((i >> LM75A_BIT1) & 0xFF);//Most signif. byte
buff[1] = (uint8_t)((i & LM75A_BIT1) << LM75A_BIT7);//Least signif. byte
}
static uint16_t to_uint16(uint8_t *buff)
{
if (buff != NULL) {
return (buff[0] << LM75A_BIT8) | buff[1];
}
else {
return UINT16_MAX;
}
}
//Read: Sensor --> MC
volatile static float_t to_float(uint8_t reg_addr, uint16_t reg_value)
{
uint16_t sign = reg_value & LM75A_SIGN_BIT_MASK;
float_t f_temp = 0.0;
float_t factor = 0.0;
switch (reg_addr) {
case LM75A_OVER_TEMP_REG:
case LM75A_THYST_REG:
factor = 0.5;
break;
case LM75A_TEMPERATURE_REG:
factor = 0.125;
}
if (sign) { //the number is negative
f_temp = (get_2s_complement(reg_value) & LM75A_DATA_BITS_MASK)
* -factor;
}
else { //the number is positive
f_temp = reg_value * factor;
}
return f_temp;
}
static void set_register(uint8_t i2c_interface, uint8_t reg_addr, float_t value)
{
bool status = false;
uint8_t tx_buff[2];
switch (reg_addr) {
case LM75A_OVER_TEMP_REG:
case LM75A_THYST_REG:
to_bytes(value, tx_buff);
status = i2c_write(i2c_interface, LM75A_ADDR, reg_addr, tx_buff, 2);
break;
case LM75A_CONFIG_REG:
tx_buff[0] = (uint8_t) value;
status = i2c_write(i2c_interface, LM75A_ADDR, reg_addr, tx_buff, 1);
}
if (!status) {
puts(
"[lm75a_tempSensorI2C/lm75A_setRegister]: Slave is not ready !!\n");
}
}
void lm75A_set_over_temperature(float_t tos)
{
set_register(LM75A_I2C_INTERFACE, LM75A_OVER_TEMP_REG, tos);
}
void lm75A_set_hysteresis_temperature(float_t thsyt)
{
set_register(LM75A_I2C_INTERFACE, LM75A_THYST_REG, thsyt);
}
static uint16_t lm75A_get_register_value(uint8_t i2c_interface,
uint8_t reg_addr,
uint8_t reg_size)
{
uint8_t rx_buff[reg_size];
i2c_clear_buffer(rx_buff, sizeof(rx_buff));
if ((reg_size > 0) && (reg_size < 3)) {
bool status = i2c_read(i2c_interface, LM75A_ADDR, reg_addr, rx_buff, sizeof(rx_buff));
if (!status) { //Slave is not ready
puts(
"[lm75a_tempSensorI2C/lm75A_getConfigReg]: Slave is not\
ready !\n");
if (reg_size < 2) {
return UCHAR_MAX;
}
else {
return UINT16_MAX;
}
}
else { //Slave acknowledged
if (reg_size < 2) {
return rx_buff[0];
}
else {
return to_uint16(rx_buff);
}
}
}
else {
puts("the register size must be less than 2");
return UINT16_MAX;
}
}
uint8_t lm75A_get_config_reg(void)
{
return lm75A_get_register_value(LM75A_I2C_INTERFACE, LM75A_CONFIG_REG, 1);
}
float_t lm75A_get_hysteresis_temperature(void)
{
uint16_t hyst_reg_value = 0;
hyst_reg_value = lm75A_get_register_value(LM75A_I2C_INTERFACE,
LM75A_THYST_REG, 2);
hyst_reg_value = (hyst_reg_value >> LM75A_BIT7);
return to_float(LM75A_THYST_REG, hyst_reg_value);
}
float_t lm75A_get_over_temperature(void)
{
uint16_t over_temp = 0;
over_temp = lm75A_get_register_value(LM75A_I2C_INTERFACE,
LM75A_OVER_TEMP_REG, 2);
over_temp = (over_temp >> LM75A_BIT7);
return to_float(LM75A_OVER_TEMP_REG, over_temp);
}
float_t lm75A_get_ambient_temperature(void)
{
uint16_t amb_temp = 0;
amb_temp = lm75A_get_register_value(LM75A_I2C_INTERFACE,
LM75A_TEMPERATURE_REG, 2);
amb_temp = (amb_temp >> LM75A_BIT5);
return to_float(LM75A_TEMPERATURE_REG, amb_temp);
}
void lm75A_reset(void)
{
lm75A_set_over_temperature(LM75A_DEFAULT_TOS);
lm75A_set_hysteresis_temperature(LM75A_DEFAULT_THYST);
set_register(LM75A_I2C_INTERFACE, LM75A_CONFIG_REG,
LM75A_DEFAULT_CONFIG_VALUE);
}
void lm75A_set_operation_mode(uint8_t op_mode)
{
uint8_t config_reg = lm75A_get_config_reg();
switch (op_mode) {
case LM75A_NORMAL_OPERATION_MODE:
config_reg &= ~(1 << LM75A_BIT0);
break;
case LM75A_SHUTDOWN_MODE:
config_reg |= (1 << LM75A_BIT0);
break;
case LM75A_COMPARATOR_MODE:
config_reg &= ~(1 << LM75A_BIT1);
break;
case LM75A_INTERRUPT_MODE:
config_reg |= (1 << LM75A_BIT1);
break;
default:
config_reg &= ~(1 << LM75A_BIT0);
}
set_register(LM75A_I2C_INTERFACE, LM75A_CONFIG_REG, config_reg);
}
bool lm75A_ext_irq_handler_register(int32_t port, uint32_t pin_bit_mask,
int32_t flags, void *handler)
{
return gpioint_set(port, pin_bit_mask, flags, handler);
}
bool lm75A_init(uint8_t i2c_interface, uint32_t baud_rate,
void *external_interr_handler)
{
if (i2c_initialize(i2c_interface, (uint32_t) I2CMASTER, 0, baud_rate, NULL)
== false) { /* initialize I2C */
puts("fatal error happened in i2c_initialize()\n");
return false;
}
//i2c_enable_pull_up_resistor(i2c_interface);
i2c_disable_pull_up_resistor(i2c_interface);
if ((external_interr_handler != NULL)
&& lm75A_ext_irq_handler_register(2, BIT3, GPIOINT_FALLING_EDGE,
external_interr_handler)) {
printf("# %-70s%10s\n", "External interrupt handler registration",
"...[OK]");
}
else {
printf("# %-70s%10s\n", "External interrupt handler registration",
"...[FAILED]");
return false;
}
puts("################## Before reset ##################");
printf("configReg = %u\n", lm75A_get_config_reg());
printf("hystTemp = %f\n", lm75A_get_hysteresis_temperature());
printf("overTemp = %f\n", lm75A_get_over_temperature());
lm75A_reset();
puts("\n################## After reset ##################");
printf("configRegInitial = %u\n", lm75A_get_config_reg());
printf("initialHystTemp = %f\n", lm75A_get_hysteresis_temperature());
printf("initialOverTemp = %f\n", lm75A_get_over_temperature());
puts("\n################## New configuration ##################");
// set the hysteresis temperature
lm75A_set_hysteresis_temperature(32.0);
printf("hystTemp = %f\n", lm75A_get_hysteresis_temperature());
lm75A_set_over_temperature(33.0);
printf("overTemp = %f\n", lm75A_get_over_temperature());
puts("\n################## Go to comparator mode ##################");
lm75A_set_operation_mode(LM75A_COMPARATOR_MODE);
printf("configReg = %u\n", lm75A_get_config_reg());
// puts("\n################## Go to interrupt mode ##################");
// lm75A_set_operation_mode(LM75A_INTERRUPT_MODE);
// printf("configReg = %u\n", lm75A_get_config_reg());
return true;
}
void lm75A_set_in_alarm(bool b)
{
my_alarm = b;
}
/*
* Application entry point.
*/
void lm75A_start_sensor_sampling(void (*handler)(void))
{
/*
* Normal main() thread activity.
*/
while (true) {
printf("amb_temp = %3.3f\n", lm75A_get_ambient_temperature());
if (my_alarm && (handler != NULL)) {
handler();
my_alarm = false;
}
xtimer_usleep(100000);
xtimer_usleep(100000);
}
}