mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
moved doc to header and converted it to doxygen
This commit is contained in:
parent
5a45d15894
commit
0fb5e89c89
@ -1,110 +1,18 @@
|
|||||||
/******************************************************************************
|
/**
|
||||||
* bloom.c
|
* Bloom filter implementation
|
||||||
* ```````
|
|
||||||
* Bloom filters
|
|
||||||
*
|
*
|
||||||
* HISTORY
|
* Copyright (C) 2013 Freie Universität Berlin
|
||||||
* {x, y, z}
|
|
||||||
* A Bloom filter is a probibalistic : : :
|
|
||||||
* data structure with several interesting /|\ /|\ /|\
|
|
||||||
* properties, such as low memory usage, / | X | X | \
|
|
||||||
* asymmetric query confidence, and a very / |/ \|/ \| \
|
|
||||||
* speedy O(k) membership test. / | | \ \
|
|
||||||
* / /| /|\ |\ \
|
|
||||||
* Because a Bloom filter can . . . . . . . . .
|
|
||||||
* accept any input that can be 00000000001000101010101010100010000000000
|
|
||||||
* hashed effectively (such as " " "
|
|
||||||
* strings), that membership test \ | /
|
|
||||||
* tends to draw a crowd. TNSTAAFL, but \ | /
|
|
||||||
* as caveats go, the Bloom filters' are \ | /
|
|
||||||
* more interesting than incapacitating. \|/
|
|
||||||
* :
|
|
||||||
* Most notably, it can tell you with certainty {w}
|
|
||||||
* that an item 'i' is *not* a member of set 's',
|
|
||||||
* but it can only tell you with some finite
|
|
||||||
* probability whether an item 'i' *is* a member
|
|
||||||
* of set 's'.
|
|
||||||
*
|
*
|
||||||
* Still, along with the intriguing possibility of using bitwise AND and OR
|
* This file subject to the terms and conditions of the GNU Lesser General
|
||||||
* to compute the logical union and intersection of two filters, the cheap
|
* Public License. See the file LICENSE in the top level directory for more
|
||||||
* cost of adding elements to the filter set, and the low memory requirements,
|
* details.
|
||||||
* the Bloom filter is a good choice for many applications.
|
|
||||||
*
|
*
|
||||||
* NOTES
|
* @file
|
||||||
|
* @autor Jason Linehan <patientulysses@gmail.com>
|
||||||
|
* @autor Christian Mehlis <mehlis@inf.fu-berlin.de>
|
||||||
|
* @autor Freie Universität Berlin, Computer Systems & Telematics
|
||||||
*
|
*
|
||||||
* Let's look more closely at the probability values.
|
*/
|
||||||
*
|
|
||||||
* Assume that a hash function selects each array position with equal
|
|
||||||
* probability. If m is the number of bits in the array, and k is the number
|
|
||||||
* of hash functions, then the probability that a certain bit is not set
|
|
||||||
* to 1 by a certain hash function during the insertion of an element is
|
|
||||||
*
|
|
||||||
* 1-(1/m).
|
|
||||||
*
|
|
||||||
* The probability that it is not set to 1 by any of the hash functions is
|
|
||||||
*
|
|
||||||
* (1-(1/m))^k.
|
|
||||||
*
|
|
||||||
* If we have inserted n elements, the probability that a certain bit is
|
|
||||||
* set 0 is
|
|
||||||
*
|
|
||||||
* (1-(1/m))^kn,
|
|
||||||
*
|
|
||||||
* Meaning that the probability said bit is set to 1 is therefore
|
|
||||||
*
|
|
||||||
* 1-([1-(1/m)]^kn).
|
|
||||||
*
|
|
||||||
* Now test membership of an element that is not in the set. Each of the k
|
|
||||||
* array positions computed by the hash functions is 1 with a probability
|
|
||||||
* as above. The probability of all of them being 1, which would cause the
|
|
||||||
* algorithm to erroneously claim that the element is in the set, is often
|
|
||||||
* given as
|
|
||||||
*
|
|
||||||
* (1-[1-(1/m)]^kn)^k ~~ (1 - e^(-kn/m))^k.
|
|
||||||
*
|
|
||||||
* This is not strictly correct as it assumes independence for the
|
|
||||||
* probabilities of each bit being set. However, assuming it is a close
|
|
||||||
* approximation we have that the probability of false positives descreases
|
|
||||||
* as m (the number of bits in the array) increases, and increases as n
|
|
||||||
* (the number of inserted elements) increases. For a given m and n, the
|
|
||||||
* value of k (the number of hash functions) that minimizes the probability
|
|
||||||
* is
|
|
||||||
*
|
|
||||||
* (m/n)ln(2) ~~ 0.7(m/n),
|
|
||||||
*
|
|
||||||
* which gives the false positive probability of
|
|
||||||
*
|
|
||||||
* 2^-k ~~ 0.6185^(m/n).
|
|
||||||
*
|
|
||||||
* The required number of bits m, given n and a desired false positive
|
|
||||||
* probability p (and assuming the optimal value of k is used) can be
|
|
||||||
* computed by substituting the optimal value of k in the probability
|
|
||||||
* expression above:
|
|
||||||
*
|
|
||||||
* p = (1 - e^(-(((m/n)ln(2))*(n/m))))^((m/n)ln(2)),
|
|
||||||
*
|
|
||||||
* which simplifies to
|
|
||||||
*
|
|
||||||
* ln(p) = -(m/n) * (ln2)^2.
|
|
||||||
*
|
|
||||||
* This results in the equation
|
|
||||||
*
|
|
||||||
* m = -((n*ln(p)) / ((ln(2))^2))
|
|
||||||
*
|
|
||||||
* The classic filter uses
|
|
||||||
*
|
|
||||||
* 1.44*log2(1/eta)
|
|
||||||
*
|
|
||||||
* bits of space per inserted key, where eta is the false positive rate of
|
|
||||||
* the Bloom filter.
|
|
||||||
*
|
|
||||||
* AUTHOR
|
|
||||||
* Jason Linehan (patientulysses@gmail.com)
|
|
||||||
*
|
|
||||||
* LICENSE
|
|
||||||
* Public domain.
|
|
||||||
*
|
|
||||||
******************************************************************************/
|
|
||||||
|
|
||||||
#include <limits.h>
|
#include <limits.h>
|
||||||
#include <stdarg.h>
|
#include <stdarg.h>
|
||||||
@ -112,23 +20,10 @@
|
|||||||
|
|
||||||
#include "bloom.h"
|
#include "bloom.h"
|
||||||
|
|
||||||
|
|
||||||
#define SETBIT(a,n) (a[n/CHAR_BIT] |= (1<<(n%CHAR_BIT)))
|
#define SETBIT(a,n) (a[n/CHAR_BIT] |= (1<<(n%CHAR_BIT)))
|
||||||
#define GETBIT(a,n) (a[n/CHAR_BIT] & (1<<(n%CHAR_BIT)))
|
#define GETBIT(a,n) (a[n/CHAR_BIT] & (1<<(n%CHAR_BIT)))
|
||||||
#define ROUND(size) ((size + CHAR_BIT - 1) / CHAR_BIT)
|
#define ROUND(size) ((size + CHAR_BIT - 1) / CHAR_BIT)
|
||||||
|
|
||||||
|
|
||||||
/******************************************************************************
|
|
||||||
* bloom_new Allocate and return a pointer to a new Bloom filter.
|
|
||||||
* `````````
|
|
||||||
* @size : size of the bit array in the filter
|
|
||||||
* @nfuncs: the number of hash functions
|
|
||||||
* Returns: An allocated bloom filter
|
|
||||||
*
|
|
||||||
* USAGE
|
|
||||||
* For best results, make 'size' a power of 2.
|
|
||||||
*
|
|
||||||
******************************************************************************/
|
|
||||||
struct bloom_t *bloom_new(size_t size, size_t num_hashes, ...) {
|
struct bloom_t *bloom_new(size_t size, size_t num_hashes, ...) {
|
||||||
struct bloom_t *bloom;
|
struct bloom_t *bloom;
|
||||||
va_list hashes;
|
va_list hashes;
|
||||||
@ -171,14 +66,6 @@ struct bloom_t *bloom_new(size_t size, size_t num_hashes, ...) {
|
|||||||
return bloom;
|
return bloom;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/******************************************************************************
|
|
||||||
* bloom_del Delete a Bloom filter.
|
|
||||||
* `````````
|
|
||||||
* @bloom : The condemned.
|
|
||||||
* Returns: nothing.
|
|
||||||
*
|
|
||||||
******************************************************************************/
|
|
||||||
void bloom_del(struct bloom_t *bloom)
|
void bloom_del(struct bloom_t *bloom)
|
||||||
{
|
{
|
||||||
free(bloom->a);
|
free(bloom->a);
|
||||||
@ -186,18 +73,6 @@ void bloom_del(struct bloom_t *bloom)
|
|||||||
free(bloom);
|
free(bloom);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/******************************************************************************
|
|
||||||
* bloom_add Add a string to a Bloom filter.
|
|
||||||
* `````````
|
|
||||||
* @bloom : Bloom filter
|
|
||||||
* @s : string to add
|
|
||||||
* Returns: nothing.
|
|
||||||
*
|
|
||||||
* CAVEAT
|
|
||||||
* Once a string has been added to the filter, it cannot be "removed"!
|
|
||||||
*
|
|
||||||
******************************************************************************/
|
|
||||||
void bloom_add(struct bloom_t *bloom, const char *s)
|
void bloom_add(struct bloom_t *bloom, const char *s)
|
||||||
{
|
{
|
||||||
unsigned int hash;
|
unsigned int hash;
|
||||||
@ -209,46 +84,6 @@ void bloom_add(struct bloom_t *bloom, const char *s)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/******************************************************************************
|
|
||||||
* bloom_check Determine if a string is in the Bloom filter.
|
|
||||||
* ```````````
|
|
||||||
* @bloom : Bloom filter
|
|
||||||
* @s : string to add
|
|
||||||
* Returns: false if string does not exist in the filter, otherwise true.
|
|
||||||
*
|
|
||||||
* NOTES
|
|
||||||
*
|
|
||||||
* So this is the freakshow that bored programmers pay a nickel to get a
|
|
||||||
* peek at, step right up. This is the way the membership test works.
|
|
||||||
*
|
|
||||||
* The string 's' is hashed once for each of the 'k' hash functions, as
|
|
||||||
* though we were planning to add it to the filter. Instead of adding it
|
|
||||||
* however, we examine the bit that we *would* have set, and consider its
|
|
||||||
* value.
|
|
||||||
*
|
|
||||||
* If the bit is 1 (set), the string we are hashing may be in the filter,
|
|
||||||
* since it would have set this bit when it was originally hashed. However,
|
|
||||||
* it may also be that another string just happened to produce a hash value
|
|
||||||
* that would also set this bit. That would be a false positive. This is why
|
|
||||||
* we have k > 1, so we can minimize the likelihood of false positives
|
|
||||||
* occuring.
|
|
||||||
*
|
|
||||||
* If every bit corresponding to every one of the k hashes of our query
|
|
||||||
* string is set, we can say with some probability of being correct that
|
|
||||||
* the string we are holding is indeed "in" the filter. However, we can
|
|
||||||
* never be sure.
|
|
||||||
*
|
|
||||||
* If, however, as we hash our string and peek at the resulting bit in the
|
|
||||||
* filter, we find the bit is 0 (not set)... well now, that's different.
|
|
||||||
* In this case, we can say with absolute certainty that the string we are
|
|
||||||
* holding is *not* in the filter, because if it were, this bit would have
|
|
||||||
* to be set.
|
|
||||||
*
|
|
||||||
* In this way, the Bloom filter can answer NO with absolute surety, but
|
|
||||||
* can only speak a qualified YES.
|
|
||||||
*
|
|
||||||
******************************************************************************/
|
|
||||||
bool bloom_check(struct bloom_t *bloom, const char *s)
|
bool bloom_check(struct bloom_t *bloom, const char *s)
|
||||||
{
|
{
|
||||||
unsigned int hash;
|
unsigned int hash;
|
||||||
|
@ -1,3 +1,111 @@
|
|||||||
|
/**
|
||||||
|
* bloom.c
|
||||||
|
*
|
||||||
|
* Bloom filters
|
||||||
|
*
|
||||||
|
* HISTORY
|
||||||
|
* {x, y, z}
|
||||||
|
* A Bloom filter is a probibalistic : : :
|
||||||
|
* data structure with several interesting /|\ /|\ /|\
|
||||||
|
* properties, such as low memory usage, / | X | X | \
|
||||||
|
* asymmetric query confidence, and a very / |/ \|/ \| \
|
||||||
|
* speedy O(k) membership test. / | | \ \
|
||||||
|
* / /| /|\ |\ \
|
||||||
|
* Because a Bloom filter can . . . . . . . . .
|
||||||
|
* accept any input that can be 00000000001000101010101010100010000000000
|
||||||
|
* hashed effectively (such as " " "
|
||||||
|
* strings), that membership test \ | /
|
||||||
|
* tends to draw a crowd. TNSTAAFL, but \ | /
|
||||||
|
* as caveats go, the Bloom filters' are \ | /
|
||||||
|
* more interesting than incapacitating. \|/
|
||||||
|
* :
|
||||||
|
* Most notably, it can tell you with certainty {w}
|
||||||
|
* that an item 'i' is *not* a member of set 's',
|
||||||
|
* but it can only tell you with some finite
|
||||||
|
* probability whether an item 'i' *is* a member
|
||||||
|
* of set 's'.
|
||||||
|
*
|
||||||
|
* Still, along with the intriguing possibility of using bitwise AND and OR
|
||||||
|
* to compute the logical union and intersection of two filters, the cheap
|
||||||
|
* cost of adding elements to the filter set, and the low memory requirements,
|
||||||
|
* the Bloom filter is a good choice for many applications.
|
||||||
|
*
|
||||||
|
* NOTES
|
||||||
|
*
|
||||||
|
* Let's look more closely at the probability values.
|
||||||
|
*
|
||||||
|
* Assume that a hash function selects each array position with equal
|
||||||
|
* probability. If m is the number of bits in the array, and k is the number
|
||||||
|
* of hash functions, then the probability that a certain bit is not set
|
||||||
|
* to 1 by a certain hash function during the insertion of an element is
|
||||||
|
*
|
||||||
|
* 1-(1/m).
|
||||||
|
*
|
||||||
|
* The probability that it is not set to 1 by any of the hash functions is
|
||||||
|
*
|
||||||
|
* (1-(1/m))^k.
|
||||||
|
*
|
||||||
|
* If we have inserted n elements, the probability that a certain bit is
|
||||||
|
* set 0 is
|
||||||
|
*
|
||||||
|
* (1-(1/m))^kn,
|
||||||
|
*
|
||||||
|
* Meaning that the probability said bit is set to 1 is therefore
|
||||||
|
*
|
||||||
|
* 1-([1-(1/m)]^kn).
|
||||||
|
*
|
||||||
|
* Now test membership of an element that is not in the set. Each of the k
|
||||||
|
* array positions computed by the hash functions is 1 with a probability
|
||||||
|
* as above. The probability of all of them being 1, which would cause the
|
||||||
|
* algorithm to erroneously claim that the element is in the set, is often
|
||||||
|
* given as
|
||||||
|
*
|
||||||
|
* (1-[1-(1/m)]^kn)^k ~~ (1 - e^(-kn/m))^k.
|
||||||
|
*
|
||||||
|
* This is not strictly correct as it assumes independence for the
|
||||||
|
* probabilities of each bit being set. However, assuming it is a close
|
||||||
|
* approximation we have that the probability of false positives descreases
|
||||||
|
* as m (the number of bits in the array) increases, and increases as n
|
||||||
|
* (the number of inserted elements) increases. For a given m and n, the
|
||||||
|
* value of k (the number of hash functions) that minimizes the probability
|
||||||
|
* is
|
||||||
|
*
|
||||||
|
* (m/n)ln(2) ~~ 0.7(m/n),
|
||||||
|
*
|
||||||
|
* which gives the false positive probability of
|
||||||
|
*
|
||||||
|
* 2^-k ~~ 0.6185^(m/n).
|
||||||
|
*
|
||||||
|
* The required number of bits m, given n and a desired false positive
|
||||||
|
* probability p (and assuming the optimal value of k is used) can be
|
||||||
|
* computed by substituting the optimal value of k in the probability
|
||||||
|
* expression above:
|
||||||
|
*
|
||||||
|
* p = (1 - e^(-(((m/n)ln(2))*(n/m))))^((m/n)ln(2)),
|
||||||
|
*
|
||||||
|
* which simplifies to
|
||||||
|
*
|
||||||
|
* ln(p) = -(m/n) * (ln2)^2.
|
||||||
|
*
|
||||||
|
* This results in the equation
|
||||||
|
*
|
||||||
|
* m = -((n*ln(p)) / ((ln(2))^2))
|
||||||
|
*
|
||||||
|
* The classic filter uses
|
||||||
|
*
|
||||||
|
* 1.44*log2(1/eta)
|
||||||
|
*
|
||||||
|
* bits of space per inserted key, where eta is the false positive rate of
|
||||||
|
* the Bloom filter.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @autor Christian Mehlis <mehlis@inf.fu-berlin.de>
|
||||||
|
* @autor Freie Universität Berlin, Computer Systems & Telematics
|
||||||
|
*/
|
||||||
|
|
||||||
#ifndef _BLOOM_FILTER_H
|
#ifndef _BLOOM_FILTER_H
|
||||||
#define _BLOOM_FILTER_H
|
#define _BLOOM_FILTER_H
|
||||||
|
|
||||||
@ -5,8 +113,14 @@
|
|||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* hashfp_t hash function to use in thee filter
|
||||||
|
*/
|
||||||
typedef unsigned int (*hashfp_t)(const char *);
|
typedef unsigned int (*hashfp_t)(const char *);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* struct bloom_t bloom filter object
|
||||||
|
*/
|
||||||
struct bloom_t {
|
struct bloom_t {
|
||||||
size_t m;
|
size_t m;
|
||||||
size_t k;
|
size_t k;
|
||||||
@ -14,9 +128,77 @@ struct bloom_t {
|
|||||||
hashfp_t *hash;
|
hashfp_t *hash;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* bloom_new Allocate and return a pointer to a new Bloom filter.
|
||||||
|
*
|
||||||
|
* For best results, make 'size' a power of 2.
|
||||||
|
*
|
||||||
|
* @param size size of the bit array in the filter
|
||||||
|
* @param num_hashes the number of hash functions
|
||||||
|
* @param functions varg function pointers, use hashfp_t
|
||||||
|
*
|
||||||
|
* @return An allocated bloom filter
|
||||||
|
*
|
||||||
|
*/
|
||||||
struct bloom_t *bloom_new(size_t size, size_t num_hashes, ...);
|
struct bloom_t *bloom_new(size_t size, size_t num_hashes, ...);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* bloom_del Delete a Bloom filter.
|
||||||
|
*
|
||||||
|
* @param bloom The condemned
|
||||||
|
* @return nothing
|
||||||
|
*
|
||||||
|
*/
|
||||||
void bloom_del(struct bloom_t *bloom);
|
void bloom_del(struct bloom_t *bloom);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* bloom_add Add a string to a Bloom filter.
|
||||||
|
*
|
||||||
|
* CAVEAT
|
||||||
|
* Once a string has been added to the filter, it cannot be "removed"!
|
||||||
|
*
|
||||||
|
* @param bloom Bloom filter
|
||||||
|
* @param s string to add
|
||||||
|
* @return nothing
|
||||||
|
*
|
||||||
|
*/
|
||||||
void bloom_add(struct bloom_t *bloom, const char *s);
|
void bloom_add(struct bloom_t *bloom, const char *s);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* bloom_check Determine if a string is in the Bloom filter.
|
||||||
|
*
|
||||||
|
* The string 's' is hashed once for each of the 'k' hash functions, as
|
||||||
|
* though we were planning to add it to the filter. Instead of adding it
|
||||||
|
* however, we examine the bit that we *would* have set, and consider its
|
||||||
|
* value.
|
||||||
|
*
|
||||||
|
* If the bit is 1 (set), the string we are hashing may be in the filter,
|
||||||
|
* since it would have set this bit when it was originally hashed. However,
|
||||||
|
* it may also be that another string just happened to produce a hash value
|
||||||
|
* that would also set this bit. That would be a false positive. This is why
|
||||||
|
* we have k > 1, so we can minimize the likelihood of false positives
|
||||||
|
* occuring.
|
||||||
|
*
|
||||||
|
* If every bit corresponding to every one of the k hashes of our query
|
||||||
|
* string is set, we can say with some probability of being correct that
|
||||||
|
* the string we are holding is indeed "in" the filter. However, we can
|
||||||
|
* never be sure.
|
||||||
|
*
|
||||||
|
* If, however, as we hash our string and peek at the resulting bit in the
|
||||||
|
* filter, we find the bit is 0 (not set)... well now, that's different.
|
||||||
|
* In this case, we can say with absolute certainty that the string we are
|
||||||
|
* holding is *not* in the filter, because if it were, this bit would have
|
||||||
|
* to be set.
|
||||||
|
*
|
||||||
|
* In this way, the Bloom filter can answer NO with absolute surety, but
|
||||||
|
* can only speak a qualified YES.
|
||||||
|
*
|
||||||
|
* @param bloom Bloom filter
|
||||||
|
* @param s string to check
|
||||||
|
* @return false if string does not exist in the filter
|
||||||
|
* @return true if string is may be in the filter
|
||||||
|
*
|
||||||
|
*/
|
||||||
bool bloom_check(struct bloom_t *bloom, const char *s);
|
bool bloom_check(struct bloom_t *bloom, const char *s);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -1,6 +1,23 @@
|
|||||||
/******************************************************************************
|
/**
|
||||||
|
* This file contains some simple hash function
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 Freie Universität Berlin
|
||||||
|
*
|
||||||
|
* This file subject to the terms and conditions of the GNU Lesser General
|
||||||
|
* Public License. See the file LICENSE in the top level directory for more
|
||||||
|
* details.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @autor Jason Linehan <patientulysses@gmail.com>
|
||||||
|
* @author Freie Universität Berlin, Computer Systems & Telematics
|
||||||
|
* @author Christian Mehlis <mehlis@inf.fu-berlin.de>
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
* djb2_hash
|
* djb2_hash
|
||||||
* `````````
|
*
|
||||||
* HISTORY
|
* HISTORY
|
||||||
* This algorithm (k=33) was first reported by Dan Bernstein many years
|
* This algorithm (k=33) was first reported by Dan Bernstein many years
|
||||||
* ago in comp.lang.c. Another version of this algorithm (now favored by
|
* ago in comp.lang.c. Another version of this algorithm (now favored by
|
||||||
@ -10,8 +27,7 @@
|
|||||||
*
|
*
|
||||||
* The magic of number 33 (why it works better than many other constants,
|
* The magic of number 33 (why it works better than many other constants,
|
||||||
* prime or not) has never been adequately explained.
|
* prime or not) has never been adequately explained.
|
||||||
*
|
*/
|
||||||
******************************************************************************/
|
|
||||||
static inline unsigned long djb2_hash(const char *str)
|
static inline unsigned long djb2_hash(const char *str)
|
||||||
{
|
{
|
||||||
unsigned long hash;
|
unsigned long hash;
|
||||||
@ -26,9 +42,9 @@ static inline unsigned long djb2_hash(const char *str)
|
|||||||
return hash;
|
return hash;
|
||||||
}
|
}
|
||||||
|
|
||||||
/******************************************************************************
|
/**
|
||||||
* sdbm_hash
|
* sdbm_hash
|
||||||
* `````````
|
*
|
||||||
* HISTORY
|
* HISTORY
|
||||||
* This algorithm was created for sdbm (a public-domain reimplementation
|
* This algorithm was created for sdbm (a public-domain reimplementation
|
||||||
* of ndbm) database library. It was found to do well in scrambling bits,
|
* of ndbm) database library. It was found to do well in scrambling bits,
|
||||||
@ -45,7 +61,7 @@ static inline unsigned long djb2_hash(const char *str)
|
|||||||
* out to be a prime. this is one of the algorithms used in berkeley db
|
* out to be a prime. this is one of the algorithms used in berkeley db
|
||||||
* (see sleepycat) and elsewhere.
|
* (see sleepycat) and elsewhere.
|
||||||
*
|
*
|
||||||
******************************************************************************/
|
*/
|
||||||
static inline unsigned long sdbm_hash(const char *str)
|
static inline unsigned long sdbm_hash(const char *str)
|
||||||
{
|
{
|
||||||
unsigned long hash;
|
unsigned long hash;
|
||||||
@ -60,9 +76,9 @@ static inline unsigned long sdbm_hash(const char *str)
|
|||||||
return hash;
|
return hash;
|
||||||
}
|
}
|
||||||
|
|
||||||
/******************************************************************************
|
/**
|
||||||
* lose lose
|
* lose lose
|
||||||
* `````````
|
*
|
||||||
* HISTORY
|
* HISTORY
|
||||||
* This hash function appeared in K&R (1st ed) but at least the reader
|
* This hash function appeared in K&R (1st ed) but at least the reader
|
||||||
* was warned:
|
* was warned:
|
||||||
@ -78,8 +94,7 @@ static inline unsigned long sdbm_hash(const char *str)
|
|||||||
* checking something like Knuth's Sorting and Searching, so it stuck.
|
* checking something like Knuth's Sorting and Searching, so it stuck.
|
||||||
* It is now found mixed with otherwise respectable code, eg. cnews. sigh.
|
* It is now found mixed with otherwise respectable code, eg. cnews. sigh.
|
||||||
* [see also: tpop]
|
* [see also: tpop]
|
||||||
*
|
*/
|
||||||
******************************************************************************/
|
|
||||||
static inline unsigned long kr_hash(const char *str)
|
static inline unsigned long kr_hash(const char *str)
|
||||||
{
|
{
|
||||||
unsigned int hash;
|
unsigned int hash;
|
||||||
@ -94,12 +109,11 @@ static inline unsigned long kr_hash(const char *str)
|
|||||||
return hash;
|
return hash;
|
||||||
}
|
}
|
||||||
|
|
||||||
/******************************************************************************
|
/**
|
||||||
* sax_hash
|
* sax_hash
|
||||||
* ````````
|
|
||||||
* Shift, Add, XOR
|
|
||||||
*
|
*
|
||||||
******************************************************************************/
|
* Shift, Add, XOR
|
||||||
|
*/
|
||||||
static inline unsigned int sax_hash(const char *key)
|
static inline unsigned int sax_hash(const char *key)
|
||||||
{
|
{
|
||||||
unsigned int h;
|
unsigned int h;
|
||||||
@ -114,14 +128,13 @@ static inline unsigned int sax_hash(const char *key)
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/******************************************************************************
|
/**
|
||||||
* dek_hash
|
* dek_hash
|
||||||
* ````````
|
*
|
||||||
* HISTORY
|
* HISTORY
|
||||||
* Proposed by Donald E. Knuth in The Art Of Computer Programming Vol. 3,
|
* Proposed by Donald E. Knuth in The Art Of Computer Programming Vol. 3,
|
||||||
* under the topic of "Sorting and Search", Chapter 6.4.
|
* under the topic of "Sorting and Search", Chapter 6.4.
|
||||||
*
|
*/
|
||||||
******************************************************************************/
|
|
||||||
static inline unsigned int dek_hash(const char *str, unsigned int len)
|
static inline unsigned int dek_hash(const char *str, unsigned int len)
|
||||||
{
|
{
|
||||||
unsigned int hash;
|
unsigned int hash;
|
||||||
@ -138,13 +151,12 @@ static inline unsigned int dek_hash(const char *str, unsigned int len)
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/******************************************************************************
|
/**
|
||||||
* fnv_hash
|
* fnv_hash
|
||||||
* ````````
|
*
|
||||||
* NOTE
|
* NOTE
|
||||||
* For a more fully featured and modern version of this hash, see fnv32.c
|
* For a more fully featured and modern version of this hash, see fnv32.c
|
||||||
*
|
*/
|
||||||
******************************************************************************/
|
|
||||||
static inline unsigned int fnv_hash(const char *str)
|
static inline unsigned int fnv_hash(const char *str)
|
||||||
{
|
{
|
||||||
#define FNV_PRIME 0x811C9DC5
|
#define FNV_PRIME 0x811C9DC5
|
||||||
|
Loading…
Reference in New Issue
Block a user