1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/cc110x/include/cc110x_params.h

121 lines
2.8 KiB
C
Raw Normal View History

drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
/*
* Copyright (C) 2018 Otto-von-Guericke-Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_cc110x
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
* @{
*
* @file
* @brief cc110x board specific configuration
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
*
* @author Marian Buschsieweke <marian.buschsieweke@ovgu.de>
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
*/
#ifndef CC110X_PARAMS_H
#define CC110X_PARAMS_H
#include "board.h"
#include "cc110x_settings.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @name Default parameters for the cc110x driver
*
* These values are based on the msba2 board
* @{
*/
#ifndef CC110X_PARAM_SPI
#define CC110X_PARAM_SPI SPI_DEV(0) /**< SPI bus connected to CC110x */
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#endif
#ifndef CC110X_PARAM_CS
#define CC110X_PARAM_CS GPIO_PIN(1, 21) /**< SPI-CS connected to CC110x */
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#endif
#ifndef CC110X_PARAM_GDO0
#define CC110X_PARAM_GDO0 GPIO_PIN(0, 27) /**< GPIO connected to CC110x' GDO0 pin */
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#endif
#ifndef CC110X_PARAM_GDO2
#define CC110X_PARAM_GDO2 GPIO_PIN(0, 28) /**< GPIO connected to CC110x's GDO2 pin */
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#endif
#ifndef CC110X_PARAM_SPI_CLOCK
#define CC110X_PARAM_SPI_CLOCK SPI_CLK_5MHZ /**< SPI clock frequence to use */
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#endif
#ifndef CC110X_PARAM_L2ADDR
/**
* @brief L2 address configure when the driver is initialized
*/
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#define CC110X_PARAM_L2ADDR CC110X_L2ADDR_AUTO
#endif
#ifndef CC110X_PARAM_PATABLE
/**
* @brief PA table to use
*
* Choose the one matching the base frequency your transceiver uses, otherwise
* the TX power setting will be incorrect.
*/
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#define CC110X_PARAM_PATABLE (&cc110x_patable_868mhz)
#endif
#ifndef CC110X_PARAM_CONFIG
/**
* @brief Default config to apply
*
* If 868 MHz is used as base frequency, you can set this to `NULL`
*/
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#define CC110X_PARAM_CONFIG NULL
#endif
#ifndef CC110X_PARAM_CHANNELS
/**
* @brief Default channel map to use
*
* This must match to configuration you have chosen
*/
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#define CC110X_PARAM_CHANNELS (&cc110x_chanmap_868mhz_lora)
#endif
#ifndef CC110X_PARAMS
/**
* @brief Default initialization parameters of the CC110x driver
*/
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
#define CC110X_PARAMS { \
.spi = CC110X_PARAM_SPI, \
.spi_clk = CC110X_PARAM_SPI_CLOCK, \
.cs = CC110X_PARAM_CS, \
.gdo0 = CC110X_PARAM_GDO0, \
.gdo2 = CC110X_PARAM_GDO2, \
.l2addr = CC110X_PARAM_L2ADDR, \
.patable = CC110X_PARAM_PATABLE, \
.config = CC110X_PARAM_CONFIG, \
.channels = CC110X_PARAM_CHANNELS, \
}
#endif
/** @} */
/**
* @brief CC110X initialization parameters
drivers/cc110x: Rewrite of the cc110x driver The cc110x driver has been re-written from scratch to overcome the limitations of the old driver. The main motivation of the rewrite was to achieve better maintainability by a detailed documentation, reduce the complexity and the overhead of the SPI communication with the device, and to allow to simultaneously use transceivers with different configuration regarding the used base band, the channel bandwidth, the modulation rate, and the channel map. Features of this driver include: - Support for the CC1100, CC1101, and the CC1100e sub-gigahertz transceivers. - Detailed documentation of every aspect of this driver. - An easy to use configuration API that allows setting the transceiver configuration (modulation rate, channel bandwidth, base frequency) and the channel map. - Fast channel hopping by pre-calibration of the channels during device configuration (so that no calibration is needed during hopping). - Simplified SPI communication: Only during start-up the MCU has to wait for the transceiver to be ready (for the power regulators and the crystal to stabilize). The old driver did this for every SPI transfer, which resulted in complex communication code. This driver will wait on start up for the transceiver to power up and then use RIOT's SPI API like every other driver. (Not only the data sheet states that this is fine, it also proved to be reliable in practise.) - Greatly reduced latency: The RTT on the old driver (@150 kbps data rate) was about 16ms, the new driver (@250 kbps data rate) has as RTT of ~3ms (depending on SPI clock and on CPU performance) (measured with ping6). - Increased reliability: The preamble size and the sync word size have been doubled compared to the old driver (preamble: 8 bytes instead of 4, sync word: 4 byte instead of 2). The new values are the once recommended by the data sheet for reliable communication. - Basic diagnostic during driver initialization to detect common issues as SPI communication issues and GDO pin configuration/wiring issues. - TX power configuration with netdev_driver_t::set() API-integration - Calls to netdev_driver_t::send() block until the transmission has completed to ease the use of the API (implemented without busy waiting, so that the MCU can enter lower power states or other threads can be executed).
2018-11-08 17:37:07 +01:00
*/
static const cc110x_params_t cc110x_params[] = {
CC110X_PARAMS
};
#ifdef __cplusplus
}
#endif
#endif /* CC110X_PARAMS_H */
/** @} */