1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/sys/ztimer/periph_rtc.c

146 lines
4.1 KiB
C
Raw Normal View History

/*
* Copyright (C) 2020 Kaspar Schleiser <kaspar@schleiser.de>
* 2020 Freie Universität Berlin
* 2020 Inria
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup sys_ztimer_periph_rtc
* @{
*
* @file
* @brief ztimer periph/rtc backend implementation
*
* This implementation simply converts an integer time to split RTC values and
* back, which is rather inefficient. If available, use ztimer_periph_rtt.
*
* @author Kaspar Schleiser <kaspar@schleiser.de>
*
* @}
*/
#include "periph/rtc.h"
#include "ztimer/periph_rtc.h"
2020-10-22 11:35:22 +02:00
#define ENABLE_DEBUG 0
#include "debug.h"
/* this algorithm and the one from _timestamp_to_gmt_civil() have been adapted from
* http://ptspts.blogspot.com/2009/11/how-to-convert-unix-timestamp-to-civil.html.
*
* "The algorithmic solution above is part of the programming folklore."
*/
static uint32_t _gmt_civil_to_timestamp(unsigned y, unsigned m, unsigned d,
unsigned h, unsigned mi, unsigned s)
{
if (m <= 2) {
y -= 1;
m += 12;
}
return (365 * y + y / 4 - y / 100 + y / 400 + 3 * (m + 1) / 5 + 30 * m + d -
719561) * 86400 + 3600 * h + 60 * mi + s;
}
void _timestamp_to_gmt_civil(struct tm *_tm, uint32_t epoch)
{
uint32_t s = epoch % 86400;
epoch /= 86400;
uint32_t h = s / 3600;
uint32_t m = s / 60 % 60;
s = s % 60;
uint32_t x = (epoch * 4 + 102032) / 146097 + 15;
uint32_t b = epoch + 2442113 + x - (x / 4);
uint32_t c = (b * 20 - 2442) / 7305;
uint32_t d = b - 365 * c - c / 4;
uint32_t e = d * 1000 / 30601;
uint32_t f = d - e * 30 - e * 601 / 1000;
if (e < 14) {
struct tm tmp =
{ .tm_year = c - 4716 - 1900, .tm_mon = e - 1, .tm_mday = f,
.tm_hour = h, .tm_min = m, .tm_sec = s };
*_tm = tmp;
}
else {
struct tm tmp =
{ .tm_year = c - 4715 - 1900, .tm_mon = e - 13, .tm_mday = f,
.tm_hour = h, .tm_min = m, .tm_sec = s };
*_tm = tmp;
}
}
static void _ztimer_periph_rtc_callback(void *arg)
{
ztimer_handler((ztimer_clock_t *)arg);
}
static uint32_t _ztimer_periph_rtc_now(ztimer_clock_t *clock)
{
(void)clock;
struct tm time;
rtc_get_time(&time);
return _gmt_civil_to_timestamp(time.tm_year + 1900, time.tm_mon,
time.tm_mday, time.tm_hour, time.tm_min,
time.tm_sec);
}
static void _ztimer_periph_rtc_set(ztimer_clock_t *clock, uint32_t val)
{
unsigned state = irq_disable();
uint32_t now = _ztimer_periph_rtc_now(NULL);
uint32_t target;
do {
/* make sure there's no pending ISR */
rtc_clear_alarm();
target = now + val;
struct tm _tm;
_timestamp_to_gmt_civil(&_tm, target);
/* TODO: ensure this doesn't underflow */
rtc_set_alarm(&_tm, _ztimer_periph_rtc_callback, clock);
if (val > 1) {
/* If val <= 1, it is possible that the RTC second flips somewhere
* between getting the current value and adding 1, resulting in
* setting the current time as target, which in turn would make the
* RTC never trigger. In that case, check the target that as been
* set is still in the future at the end of the loop body.
*
* Skip that if val was more than a second away.
*/
break;
}
} while (target <= (now = _ztimer_periph_rtc_now(NULL)));
irq_restore(state);
}
static void _ztimer_periph_rtc_cancel(ztimer_clock_t *clock)
{
(void)clock;
rtc_clear_alarm();
}
static const ztimer_ops_t _ztimer_periph_rtc_ops = {
.set = _ztimer_periph_rtc_set,
.now = _ztimer_periph_rtc_now,
.cancel = _ztimer_periph_rtc_cancel,
};
void ztimer_periph_rtc_init(ztimer_periph_rtc_t *clock)
{
clock->ops = &_ztimer_periph_rtc_ops;
clock->max_value = UINT32_MAX;
rtc_init();
rtc_poweron();
}