1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/boards/frdm-kw41z/include/periph_conf.h

287 lines
8.9 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup boards_frdm-kw41z
* @{
*
* @file
* @name Peripheral MCU configuration for the FRDM-KW41Z
*
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*/
#ifndef PERIPH_CONF_H
#define PERIPH_CONF_H
#include "periph_cpu.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @name Clock system configuration
* @{
*/
static const clock_config_t clock_config = {
/*
* This configuration results in the system running with the internal clock
* with the following clock frequencies:
* Core: 48 MHz
* Bus: 24 MHz
* Flash: 24 MHz
*/
.clkdiv1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(1),
/* unsure if this RTC load cap configuration is correct, but it matches the
* settings used by the example code in the NXP provided SDK */
.rtc_clc = 0,
/* Use the 32 kHz oscillator as ERCLK32K. Note that the values here have a
* different mapping for the KW41Z than the values used in the Kinetis K series */
.osc32ksel = SIM_SOPT1_OSC32KSEL(0),
.clock_flags =
KINETIS_CLOCK_OSC0_EN | /* Enable RSIM oscillator */
KINETIS_CLOCK_RTCOSC_EN |
KINETIS_CLOCK_USE_FAST_IRC |
KINETIS_CLOCK_MCGIRCLK_EN | /* Used for LPUART clocking */
KINETIS_CLOCK_MCGIRCLK_STOP_EN |
0,
/* Using FEI mode by default, the external crystal settings below are only
* used if mode is changed to an external mode (PEE, FBE, or FEE) */
.default_mode = KINETIS_MCG_MODE_FEI,
/* The crystal connected to RSIM OSC is 32 MHz */
.erc_range = KINETIS_MCG_ERC_RANGE_VERY_HIGH,
.osc_clc = 0, /* no load cap configuration */
.oscsel = MCG_C7_OSCSEL(0), /* Use RSIM for external clock */
.fcrdiv = MCG_SC_FCRDIV(0), /* Fast IRC divide by 1 => 4 MHz */
.fll_frdiv = MCG_C1_FRDIV(0b101), /* Divide by 1024 */
.fll_factor_fei = KINETIS_MCG_FLL_FACTOR_1464, /* FEI FLL freq = 48 MHz */
.fll_factor_fee = KINETIS_MCG_FLL_FACTOR_1280, /* FEE FLL freq = 40 MHz */
};
/* Radio xtal frequency, either 32 MHz or 26 MHz */
#define CLOCK_RADIOXTAL (32000000ul)
/* CPU core clock, the MCG clock output frequency */
#define CLOCK_CORECLOCK (48000000ul)
#define CLOCK_BUSCLOCK (CLOCK_CORECLOCK / 2)
#define CLOCK_MCGIRCLK (4000000ul)
/** @} */
/**
* @name Timer configuration
* @{
*/
#define PIT_NUMOF (1U)
#define PIT_CONFIG { \
{ \
.prescaler_ch = 0, \
.count_ch = 1, \
}, \
}
#define LPTMR_NUMOF (1U)
#define LPTMR_CONFIG { \
{ \
.dev = LPTMR0, \
.irqn = LPTMR0_IRQn, \
2018-03-03 09:14:55 +01:00
.src = 2, \
.base_freq = 32768u, \
} \
}
#define TIMER_NUMOF ((PIT_NUMOF) + (LPTMR_NUMOF))
#define PIT_BASECLOCK (CLOCK_BUSCLOCK)
#define LPTMR_ISR_0 isr_lptmr0
/** @} */
/**
* @name UART configuration
* @{
*/
static const uart_conf_t uart_config[] = {
{
.dev = LPUART0,
.freq = CLOCK_MCGIRCLK,
.pin_rx = GPIO_PIN(PORT_C, 6),
.pin_tx = GPIO_PIN(PORT_C, 7),
.pcr_rx = PORT_PCR_MUX(4),
.pcr_tx = PORT_PCR_MUX(4),
.irqn = LPUART0_IRQn,
.scgc_addr = &SIM->SCGC5,
.scgc_bit = SIM_SCGC5_LPUART0_SHIFT,
.mode = UART_MODE_8N1,
.type = KINETIS_LPUART,
},
};
#define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0]))
#define LPUART_0_ISR isr_lpuart0
/* Use MCGIRCLK (internal reference 4 MHz clock) */
#define LPUART_0_SRC 3
/** @} */
/**
* @name ADC configuration
* @{
*/
static const adc_conf_t adc_config[] = {
/* dev, pin, channel */
/* ADC0_DP-ADC0_DM differential reading (Arduino A5 - A0) */
[ 0] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 0 | ADC_SC1_DIFF_MASK, .avg = ADC_AVG_MAX },
/* ADC0_DP single ended reading (Arduino A5) */
[ 1] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 0, .avg = ADC_AVG_MAX },
/* PTB2 (Arduino A2) */
[ 2] = { .dev = ADC0, .pin = GPIO_PIN(PORT_B, 2), .chan = 3, .avg = ADC_AVG_MAX },
/* PTB3 (Arduino A3) */
[ 3] = { .dev = ADC0, .pin = GPIO_PIN(PORT_B, 3), .chan = 2, .avg = ADC_AVG_MAX },
/* internal: temperature sensor */
/* The temperature sensor has a very high output impedance, it must not be
* sampled using hardware averaging, or the sampled values will be garbage */
[ 4] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 26, .avg = ADC_AVG_NONE },
/* Note: the band gap buffer uses a bit of current and is turned off by default,
* Set PMC->REGSC |= PMC_REGSC_BGBE_MASK before reading or the input will be floating */
/* internal: band gap */
[ 5] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 27, .avg = ADC_AVG_MAX },
/* internal: DCDC divided battery level */
[ 6] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 23, .avg = ADC_AVG_MAX },
};
#define ADC_NUMOF (sizeof(adc_config) / sizeof(adc_config[0]))
/*
* KW41Z ADC reference settings:
* 0: VREFH external pin or VREF_OUT 1.2 V signal (if VREF module is enabled)
* 1: VDDA (analog supply input voltage)
* 2-3: reserved
*
* VREF_OUT and VREFH shares the pin on KW41Z and is only connected to a 100 nF
* capacitor on the FRDM-KW41Z board. So use VDDA by default on this board
* unless the application enables the VREF module.
*/
#define ADC_REF_SETTING 1
/** @} */
/**
* @name SPI configuration
*
* Clock configuration values based on the configured 16Mhz module clock.
*
* Auto-generated by:
* cpu/kinetis/dist/calc_spi_scalers/calc_spi_scalers.c
*
* @{
*/
static const uint32_t spi_clk_config[] = {
(
SPI_CTAR_PBR(2) | SPI_CTAR_BR(5) | /* -> 100000Hz */
SPI_CTAR_PCSSCK(2) | SPI_CTAR_CSSCK(4) |
SPI_CTAR_PASC(2) | SPI_CTAR_ASC(4) |
SPI_CTAR_PDT(2) | SPI_CTAR_DT(4)
),
(
SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | /* -> 400000Hz */
SPI_CTAR_PCSSCK(2) | SPI_CTAR_CSSCK(2) |
SPI_CTAR_PASC(2) | SPI_CTAR_ASC(2) |
SPI_CTAR_PDT(2) | SPI_CTAR_DT(2)
),
(
SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | /* -> 1000000Hz */
SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(3) |
SPI_CTAR_PASC(0) | SPI_CTAR_ASC(3) |
SPI_CTAR_PDT(0) | SPI_CTAR_DT(3)
),
(
SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | /* -> 4000000Hz */
SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(1) |
SPI_CTAR_PASC(0) | SPI_CTAR_ASC(1) |
SPI_CTAR_PDT(0) | SPI_CTAR_DT(1)
),
(
SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | /* -> 4000000Hz */
SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(0) |
SPI_CTAR_PASC(0) | SPI_CTAR_ASC(0) |
SPI_CTAR_PDT(0) | SPI_CTAR_DT(0)
)
};
static const spi_conf_t spi_config[] = {
{
.dev = SPI0,
.pin_miso = GPIO_PIN(PORT_C, 18),
.pin_mosi = GPIO_PIN(PORT_C, 17),
.pin_clk = GPIO_PIN(PORT_C, 16),
.pin_cs = {
GPIO_PIN(PORT_C, 19),
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF
},
.pcr = GPIO_AF_2,
.simmask = SIM_SCGC6_SPI0_MASK
},
{
.dev = SPI1,
.pin_miso = GPIO_PIN(PORT_A, 17),
.pin_mosi = GPIO_PIN(PORT_A, 16),
.pin_clk = GPIO_PIN(PORT_A, 18),
.pin_cs = {
GPIO_PIN(PORT_A, 19),
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF
},
.pcr = GPIO_AF_2,
.simmask = SIM_SCGC6_SPI1_MASK
}
};
#define SPI_NUMOF (sizeof(spi_config) / sizeof(spi_config[0]))
/** @} */
/**
* @name I2C configuration
* @{
*/
2018-06-01 07:14:38 +02:00
static const i2c_conf_t i2c_config[] = {
{
.i2c = I2C0,
.scl_pin = GPIO_PIN(PORT_B, 0),
.sda_pin = GPIO_PIN(PORT_B, 1),
.freq = CLOCK_BUSCLOCK,
.speed = I2C_SPEED_FAST,
.irqn = I2C0_IRQn,
.scl_pcr = (PORT_PCR_MUX(3)),
.sda_pcr = (PORT_PCR_MUX(3)),
},
{
.i2c = I2C1,
.scl_pin = GPIO_PIN(PORT_C, 2),
.sda_pin = GPIO_PIN(PORT_C, 3),
.freq = CLOCK_CORECLOCK,
.speed = I2C_SPEED_FAST,
.irqn = I2C1_IRQn,
.scl_pcr = (PORT_PCR_MUX(3)),
.sda_pcr = (PORT_PCR_MUX(3)),
},
};
#define I2C_NUMOF (sizeof(i2c_config) / sizeof(i2c_config[0]))
2018-06-04 12:56:04 +02:00
#define I2C_0_ISR (isr_i2c0)
#define I2C_1_ISR (isr_i2c1)
/** @} */
/**
* @name Random Number Generator configuration
* @{
*/
#define KINETIS_TRNG TRNG
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CONF_H */
/** @} */