2018-02-01 09:53:04 +01:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2020 Kaspar Schleiser <kaspar@schleiser.de>
|
|
|
|
* 2020 Freie Universität Berlin
|
|
|
|
* 2020 Inria
|
|
|
|
*
|
|
|
|
* This file is subject to the terms and conditions of the GNU Lesser General
|
|
|
|
* Public License v2.1. See the file LICENSE in the top level directory for more
|
|
|
|
* details.
|
|
|
|
*/
|
|
|
|
/**
|
|
|
|
* @ingroup sys_ztimer_periph_rtc
|
|
|
|
* @{
|
|
|
|
*
|
|
|
|
* @file
|
|
|
|
* @brief ztimer periph/rtc backend implementation
|
|
|
|
*
|
|
|
|
* This implementation simply converts an integer time to split RTC values and
|
|
|
|
* back, which is rather inefficient. If available, use ztimer_periph_rtt.
|
|
|
|
*
|
|
|
|
* @author Kaspar Schleiser <kaspar@schleiser.de>
|
|
|
|
*
|
|
|
|
* @}
|
|
|
|
*/
|
|
|
|
#include "periph/rtc.h"
|
|
|
|
#include "ztimer/periph_rtc.h"
|
|
|
|
|
2020-10-22 11:35:22 +02:00
|
|
|
#define ENABLE_DEBUG 0
|
2018-02-01 09:53:04 +01:00
|
|
|
#include "debug.h"
|
|
|
|
|
|
|
|
/* this algorithm and the one from _timestamp_to_gmt_civil() have been adapted from
|
|
|
|
* http://ptspts.blogspot.com/2009/11/how-to-convert-unix-timestamp-to-civil.html.
|
|
|
|
*
|
|
|
|
* "The algorithmic solution above is part of the programming folklore."
|
|
|
|
*/
|
|
|
|
static uint32_t _gmt_civil_to_timestamp(unsigned y, unsigned m, unsigned d,
|
|
|
|
unsigned h, unsigned mi, unsigned s)
|
|
|
|
{
|
|
|
|
if (m <= 2) {
|
|
|
|
y -= 1;
|
|
|
|
m += 12;
|
|
|
|
}
|
|
|
|
return (365 * y + y / 4 - y / 100 + y / 400 + 3 * (m + 1) / 5 + 30 * m + d -
|
|
|
|
719561) * 86400 + 3600 * h + 60 * mi + s;
|
|
|
|
}
|
|
|
|
|
|
|
|
void _timestamp_to_gmt_civil(struct tm *_tm, uint32_t epoch)
|
|
|
|
{
|
|
|
|
uint32_t s = epoch % 86400;
|
|
|
|
|
|
|
|
epoch /= 86400;
|
|
|
|
uint32_t h = s / 3600;
|
|
|
|
uint32_t m = s / 60 % 60;
|
2021-01-19 17:48:14 +01:00
|
|
|
|
2018-02-01 09:53:04 +01:00
|
|
|
s = s % 60;
|
|
|
|
uint32_t x = (epoch * 4 + 102032) / 146097 + 15;
|
|
|
|
uint32_t b = epoch + 2442113 + x - (x / 4);
|
|
|
|
uint32_t c = (b * 20 - 2442) / 7305;
|
|
|
|
uint32_t d = b - 365 * c - c / 4;
|
|
|
|
uint32_t e = d * 1000 / 30601;
|
|
|
|
uint32_t f = d - e * 30 - e * 601 / 1000;
|
|
|
|
|
|
|
|
if (e < 14) {
|
|
|
|
struct tm tmp =
|
|
|
|
{ .tm_year = c - 4716 - 1900, .tm_mon = e - 1, .tm_mday = f,
|
|
|
|
.tm_hour = h, .tm_min = m, .tm_sec = s };
|
|
|
|
*_tm = tmp;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
struct tm tmp =
|
|
|
|
{ .tm_year = c - 4715 - 1900, .tm_mon = e - 13, .tm_mday = f,
|
|
|
|
.tm_hour = h, .tm_min = m, .tm_sec = s };
|
|
|
|
*_tm = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void _ztimer_periph_rtc_callback(void *arg)
|
|
|
|
{
|
|
|
|
ztimer_handler((ztimer_clock_t *)arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t _ztimer_periph_rtc_now(ztimer_clock_t *clock)
|
|
|
|
{
|
|
|
|
(void)clock;
|
|
|
|
|
|
|
|
struct tm time;
|
2021-01-19 17:48:14 +01:00
|
|
|
|
2018-02-01 09:53:04 +01:00
|
|
|
rtc_get_time(&time);
|
|
|
|
|
|
|
|
return _gmt_civil_to_timestamp(time.tm_year + 1900, time.tm_mon,
|
|
|
|
time.tm_mday, time.tm_hour, time.tm_min,
|
|
|
|
time.tm_sec);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void _ztimer_periph_rtc_set(ztimer_clock_t *clock, uint32_t val)
|
|
|
|
{
|
|
|
|
unsigned state = irq_disable();
|
|
|
|
|
|
|
|
uint32_t now = _ztimer_periph_rtc_now(NULL);
|
|
|
|
uint32_t target;
|
|
|
|
|
|
|
|
do {
|
|
|
|
/* make sure there's no pending ISR */
|
|
|
|
rtc_clear_alarm();
|
|
|
|
|
|
|
|
target = now + val;
|
|
|
|
|
|
|
|
struct tm _tm;
|
|
|
|
_timestamp_to_gmt_civil(&_tm, target);
|
|
|
|
|
|
|
|
/* TODO: ensure this doesn't underflow */
|
|
|
|
rtc_set_alarm(&_tm, _ztimer_periph_rtc_callback, clock);
|
|
|
|
|
|
|
|
if (val > 1) {
|
|
|
|
/* If val <= 1, it is possible that the RTC second flips somewhere
|
|
|
|
* between getting the current value and adding 1, resulting in
|
|
|
|
* setting the current time as target, which in turn would make the
|
|
|
|
* RTC never trigger. In that case, check the target that as been
|
|
|
|
* set is still in the future at the end of the loop body.
|
|
|
|
*
|
|
|
|
* Skip that if val was more than a second away.
|
|
|
|
*/
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} while (target <= (now = _ztimer_periph_rtc_now(NULL)));
|
|
|
|
|
|
|
|
irq_restore(state);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void _ztimer_periph_rtc_cancel(ztimer_clock_t *clock)
|
|
|
|
{
|
|
|
|
(void)clock;
|
|
|
|
rtc_clear_alarm();
|
|
|
|
}
|
|
|
|
|
|
|
|
static const ztimer_ops_t _ztimer_periph_rtc_ops = {
|
|
|
|
.set = _ztimer_periph_rtc_set,
|
|
|
|
.now = _ztimer_periph_rtc_now,
|
|
|
|
.cancel = _ztimer_periph_rtc_cancel,
|
|
|
|
};
|
|
|
|
|
|
|
|
void ztimer_periph_rtc_init(ztimer_periph_rtc_t *clock)
|
|
|
|
{
|
|
|
|
clock->ops = &_ztimer_periph_rtc_ops;
|
|
|
|
clock->max_value = UINT32_MAX;
|
|
|
|
rtc_init();
|
|
|
|
rtc_poweron();
|
|
|
|
}
|