1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/boards/mulle/include/periph_conf.h

408 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015 Eistec AB
* 2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
2017-04-13 17:08:13 +02:00
* @ingroup boards_mulle
* @{
*
* @file
* @name Peripheral MCU configuration for the Eistec Mulle
*
2015-09-20 13:47:39 +02:00
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef PERIPH_CONF_H
#define PERIPH_CONF_H
#include "periph_cpu.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @name Clock system configuration
* @{
*/
static const clock_config_t clock_config = {
/*
* This configuration results in the system running from the FLL output with
* the following clock frequencies:
* Core: 48 MHz
* Bus: 48 MHz
* Flex: 24 MHz
* Flash: 24 MHz
*/
/* The board has a 16 MHz crystal, though it is not used in this configuration */
/* This configuration uses the RTC crystal to provide the base clock, it
* should have better accuracy than the internal slow clock, and lower power
* consumption than using the 16 MHz crystal and the OSC0 module */
.clkdiv1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) |
SIM_CLKDIV1_OUTDIV3(2) | SIM_CLKDIV1_OUTDIV4(2),
.default_mode = KINETIS_MCG_MODE_FEE,
.erc_range = KINETIS_MCG_ERC_RANGE_LOW, /* Input clock is 32768 Hz */
.fcrdiv = 0, /* Fast IRC divide by 1 => 4 MHz */
.oscsel = 1, /* Use RTC for external clock */
/* 16 pF capacitors yield ca 10 pF load capacitance as required by the
* onboard xtal, not used when OSC0 is disabled */
.clc = 0b0001,
.fll_frdiv = 0b000, /* Divide by 1 => FLL input 32768 Hz */
.fll_factor_fei = KINETIS_MCG_FLL_FACTOR_1464, /* FLL freq = 48 MHz */
.fll_factor_fee = KINETIS_MCG_FLL_FACTOR_1464, /* FLL freq = 48 MHz */
/* PLL is unavailable when using a 32768 Hz source clock, so the
* configuration below can only be used if the above config is modified to
* use the 16 MHz crystal instead of the RTC. */
.pll_prdiv = 0b00111, /* Divide by 8 */
.pll_vdiv = 0b01100, /* Multiply by 36 => PLL freq = 72 MHz */
.enable_oscillator = false, /* the RTC module provides the clock input signal */
.select_fast_irc = true, /* Only used for FBI mode */
.enable_mcgirclk = false,
};
#define CLOCK_CORECLOCK (48000000ul)
#define CLOCK_BUSCLOCK (CLOCK_CORECLOCK / 1)
/** @} */
/**
* @name Timer configuration
* @{
*/
#define PIT_NUMOF (2U)
#define PIT_CONFIG { \
{ \
.prescaler_ch = 0, \
.count_ch = 1, \
}, \
{ \
.prescaler_ch = 2, \
.count_ch = 3, \
}, \
}
#define LPTMR_NUMOF (1U)
#define LPTMR_CONFIG { \
{ \
.dev = LPTMR0, \
2017-04-15 14:57:02 +02:00
.irqn = LPTMR0_IRQn, \
} \
}
#define TIMER_NUMOF ((PIT_NUMOF) + (LPTMR_NUMOF))
#define PIT_BASECLOCK (CLOCK_BUSCLOCK)
#define PIT_ISR_0 isr_pit1
#define PIT_ISR_1 isr_pit3
#define LPTMR_ISR_0 isr_lptmr0
/** @} */
/**
* @name UART configuration
* @{
*/
2017-04-05 11:48:34 +02:00
static const uart_conf_t uart_config[] = {
{
.dev = UART0,
.freq = CLOCK_CORECLOCK,
.pin_rx = GPIO_PIN(PORT_A, 14),
.pin_tx = GPIO_PIN(PORT_A, 15),
.pcr_rx = PORT_PCR_MUX(3),
.pcr_tx = PORT_PCR_MUX(3),
.irqn = UART0_RX_TX_IRQn,
2017-04-15 14:57:02 +02:00
.scgc_addr = &SIM->SCGC4,
.scgc_bit = SIM_SCGC4_UART0_SHIFT,
.mode = UART_MODE_8N1,
.type = KINETIS_UART,
2017-04-05 11:48:34 +02:00
},
{
.dev = UART1,
.freq = CLOCK_CORECLOCK,
.pin_rx = GPIO_PIN(PORT_C, 3),
.pin_tx = GPIO_PIN(PORT_C, 4),
.pcr_rx = PORT_PCR_MUX(3),
.pcr_tx = PORT_PCR_MUX(3),
.irqn = UART1_RX_TX_IRQn,
2017-04-15 14:57:02 +02:00
.scgc_addr = &SIM->SCGC4,
.scgc_bit = SIM_SCGC4_UART1_SHIFT,
.mode = UART_MODE_8N1,
.type = KINETIS_UART,
2017-04-05 11:48:34 +02:00
},
};
#define UART_0_ISR (isr_uart0_rx_tx)
#define UART_1_ISR (isr_uart1_rx_tx)
#define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0]))
/** @} */
/**
* @name ADC configuration
* @{
*/
static const adc_conf_t adc_config[] = {
/* internal: temperature sensor */
[ 0] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 26 },
/* internal: band gap */
[ 1] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 27 },
/* internal: V_REFSH */
[ 2] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 29 },
/* internal: V_REFSL */
[ 3] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 30 },
/* internal: DAC0 module output level */
[ 4] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 23 },
/* internal: VREF module output level */
[ 5] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 18 },
/* on board connection to Mulle Vbat/2 on PGA1_DP pin */
[ 6] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 0 },
/* on board connection to Mulle Vchr/2 on PGA1_DM pin */
[ 7] = { .dev = ADC1, .pin = GPIO_UNDEF, .chan = 19 },
/* expansion port PGA0_DP pin */
[ 8] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 0 },
/* expansion port PGA0_DM pin */
[ 9] = { .dev = ADC0, .pin = GPIO_UNDEF, .chan = 19 },
/* expansion port PTA17 */
[10] = { .dev = ADC1, .pin = GPIO_PIN(PORT_A, 17), .chan = 17 },
/* expansion port PTB0 */
[11] = { .dev = ADC1, .pin = GPIO_PIN(PORT_B, 0), .chan = 8 },
/* expansion port PTC0 */
[12] = { .dev = ADC0, .pin = GPIO_PIN(PORT_C, 0), .chan = 14 },
/* expansion port PTC8 */
[13] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 8), .chan = 4 },
/* expansion port PTC9 */
[14] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 9), .chan = 5 },
/* expansion port PTC10 */
[15] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 10), .chan = 6 },
/* expansion port PTC11 */
[16] = { .dev = ADC1, .pin = GPIO_PIN(PORT_C, 11), .chan = 7 }
};
#define ADC_NUMOF (sizeof(adc_config) / sizeof(adc_config[0]))
/*
* K60D ADC reference settings:
* 0: VREFH/VREFL external pin pair
* 1: VREF_OUT internal 1.2 V reference (VREF module must be enabled)
* 2-3: reserved
*/
#define ADC_REF_SETTING 0
/** @} */
/**
* @name DAC configuration
* @{
*/
static const dac_conf_t dac_config[] = {
{
.dev = DAC0,
.scgc_addr = &SIM->SCGC2,
.scgc_bit = SIM_SCGC2_DAC0_SHIFT
}
};
#define DAC_NUMOF (sizeof(dac_config) / sizeof(dac_config[0]))
/** @} */
/**
* @name PWM configuration
* @{
*/
static const pwm_conf_t pwm_config[] = {
{
.ftm = FTM0,
.chan = {
{ .pin = GPIO_PIN(PORT_C, 1), .af = 4, .ftm_chan = 0 },
{ .pin = GPIO_PIN(PORT_C, 2), .af = 4, .ftm_chan = 1 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 }
},
.chan_numof = 2,
.ftm_num = 0
},
{
.ftm = FTM1,
.chan = {
{ .pin = GPIO_PIN(PORT_A, 12), .af = 3, .ftm_chan = 0 },
{ .pin = GPIO_PIN(PORT_A, 13), .af = 3, .ftm_chan = 1 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 },
{ .pin = GPIO_UNDEF, .af = 0, .ftm_chan = 0 }
},
.chan_numof = 2,
.ftm_num = 1
}
};
#define PWM_NUMOF (sizeof(pwm_config) / sizeof(pwm_config[0]))
/** @} */
/**
* @name SPI configuration
*
* Clock configuration values based on the configured 47988736Hz module clock.
*
* Auto-generated by:
* cpu/kinetis/dist/calc_spi_scalers/calc_spi_scalers.c
*
* @{
*/
static const uint32_t spi_clk_config[] = {
(
SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | /* -> 93728Hz */
SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(8) |
SPI_CTAR_PASC(0) | SPI_CTAR_ASC(8) |
SPI_CTAR_PDT(0) | SPI_CTAR_DT(8)
),
(
SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | /* -> 374912Hz */
SPI_CTAR_PCSSCK(0) | SPI_CTAR_CSSCK(6) |
SPI_CTAR_PASC(0) | SPI_CTAR_ASC(6) |
SPI_CTAR_PDT(0) | SPI_CTAR_DT(6)
),
(
SPI_CTAR_PBR(1) | SPI_CTAR_BR(4) | /* -> 999765Hz */
SPI_CTAR_PCSSCK(1) | SPI_CTAR_CSSCK(3) |
SPI_CTAR_PASC(1) | SPI_CTAR_ASC(3) |
SPI_CTAR_PDT(1) | SPI_CTAR_DT(3)
),
(
SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | /* -> 4798873Hz */
SPI_CTAR_PCSSCK(2) | SPI_CTAR_CSSCK(0) |
SPI_CTAR_PASC(2) | SPI_CTAR_ASC(0) |
SPI_CTAR_PDT(2) | SPI_CTAR_DT(0)
),
(
SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | /* -> 7998122Hz */
SPI_CTAR_PCSSCK(1) | SPI_CTAR_CSSCK(0) |
SPI_CTAR_PASC(1) | SPI_CTAR_ASC(0) |
SPI_CTAR_PDT(1) | SPI_CTAR_DT(0)
)
};
static const spi_conf_t spi_config[] = {
{
.dev = SPI0,
.pin_miso = GPIO_PIN(PORT_D, 3),
.pin_mosi = GPIO_PIN(PORT_D, 2),
.pin_clk = GPIO_PIN(PORT_D, 1),
.pin_cs = {
GPIO_PIN(PORT_D, 0),
GPIO_PIN(PORT_D, 4),
GPIO_PIN(PORT_D, 5),
GPIO_PIN(PORT_D, 6),
GPIO_UNDEF
},
.pcr = GPIO_AF_2,
.simmask = SIM_SCGC6_SPI0_MASK
},
{
.dev = SPI1,
.pin_miso = GPIO_PIN(PORT_E, 3),
.pin_mosi = GPIO_PIN(PORT_E, 1),
.pin_clk = GPIO_PIN(PORT_E, 2),
.pin_cs = {
GPIO_PIN(PORT_E, 4),
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF,
GPIO_UNDEF
},
.pcr = GPIO_AF_2,
.simmask = SIM_SCGC6_SPI1_MASK
}
};
#define SPI_NUMOF (sizeof(spi_config) / sizeof(spi_config[0]))
/** @} */
/** @} */
2017-01-25 14:18:21 +01:00
/**
* @name I2C configuration
* @{
*/
#define I2C_NUMOF (1U)
#define I2C_0_EN 1
#define I2C_1_EN 0
/* I2C 0 device configuration */
#define I2C_0_DEV I2C0
#define I2C_0_CLKEN() (BITBAND_REG32(SIM->SCGC4, SIM_SCGC4_I2C0_SHIFT) = 1)
#define I2C_0_CLKDIS() (BITBAND_REG32(SIM->SCGC4, SIM_SCGC4_I2C0_SHIFT) = 0)
#define I2C_0_IRQ I2C0_IRQn
#define I2C_0_IRQ_HANDLER isr_i2c0
/* I2C 0 pin configuration */
#define I2C_0_PORT PORTB
#define I2C_0_PORT_CLKEN() (BITBAND_REG32(SIM->SCGC5, SIM_SCGC5_PORTB_SHIFT) = 1)
#define I2C_0_PIN_AF 2
#define I2C_0_SDA_PIN 1
#define I2C_0_SCL_PIN 2
#define I2C_0_PORT_CFG (PORT_PCR_MUX(I2C_0_PIN_AF) | PORT_PCR_ODE_MASK)
/** @} */
/**
* @name I2C baud rate configuration
* @{
*/
/* Low (10 kHz): MUL = 2, SCL divider = 2560, total: 5120 */
#define KINETIS_I2C_F_ICR_LOW (0x3D)
#define KINETIS_I2C_F_MULT_LOW (1)
/* Normal (100 kHz): MUL = 2, SCL divider = 240, total: 480 */
#define KINETIS_I2C_F_ICR_NORMAL (0x1F)
#define KINETIS_I2C_F_MULT_NORMAL (1)
/* Fast (400 kHz): MUL = 1, SCL divider = 128, total: 128 */
#define KINETIS_I2C_F_ICR_FAST (0x17)
#define KINETIS_I2C_F_MULT_FAST (0)
/* Fast plus (1000 kHz): MUL = 1, SCL divider = 48, total: 48 */
#define KINETIS_I2C_F_ICR_FAST_PLUS (0x10)
#define KINETIS_I2C_F_MULT_FAST_PLUS (0)
/** @} */
/**
* @name RTC configuration
* @{
*/
/* RIOT RTC implementation uses RTT for underlying timekeeper */
#define RTC_NUMOF (1U)
/** @} */
/**
* @name RTT configuration
* @{
*/
#define RTT_NUMOF (1U)
#define RTT_IRQ RTC_IRQn
#define RTT_IRQ_PRIO 10
#define RTT_ISR isr_rtc
#define RTT_DEV RTC
#define RTT_UNLOCK() (BITBAND_REG32(SIM->SCGC6, SIM_SCGC6_RTC_SHIFT) = 1)
#define RTT_MAX_VALUE (0xffffffff)
#define RTT_FREQUENCY (1) /* in Hz */
/**
* RTC module crystal load capacitance configuration bits.
*/
/* The crystal on the Mulle is designed for 12.5 pF load capacitance. According
* to the data sheet, the K60 will have a 5 pF parasitic capacitance on the
* XTAL32/EXTAL32 connection. The board traces might give some minor parasitic
* capacitance as well. */
/* Use the equation
* CL = (C1 * C2) / (C1 + C2) + Cstray
* with C1 == C2:
* C1 = 2 * (CL - Cstray)
*/
/* enable 14pF load capacitor which will yield a crystal load capacitance of 12 pF */
#define RTC_LOAD_CAP_BITS (RTC_CR_SC8P_MASK | RTC_CR_SC4P_MASK | RTC_CR_SC2P_MASK)
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CONF_H */
/** @} */