1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/rpx0xx/periph/timer.c

252 lines
6.6 KiB
C
Raw Normal View History

2021-07-02 09:17:42 +02:00
/*
* Copyright (C) 2021 Otto-von-Guericke Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_rpx0xx
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Timer implementation for the RPX0XX
* @details The RPX0XX has a 64 bit µs timer but timer interrupts match
* on the lower 32 bits.
*
* @author Fabian Hüßler <fabian.huessler@ovgu.de>
*
* @}
*/
#include <errno.h>
#include <assert.h>
#include <stdint.h>
#include <stdbool.h>
#include "vendor/RP2040.h"
#include "io_reg.h"
#include "timex.h"
#include "periph_conf.h"
#include "periph/timer.h"
#define DEV(d) (timer_config[d].dev)
#define ALARM(d, a) ((&(DEV(d)->ALARM0)) + (a))
static timer_cb_t _timer_ctx_cb[TIMER_NUMOF];
static void *_timer_ctx_arg[TIMER_NUMOF];
static unsigned _timer_flag_periodic[TIMER_NUMOF];
static unsigned _timer_flag_reset[TIMER_NUMOF];
static inline uint64_t _timer_read_us(tim_t dev)
{
/* This is not safe when the second core also accesses the timer */
unsigned state = irq_disable();
uint32_t lo = DEV(dev)->TIMELR; /* always read timelr to latch the value of timehr */
uint32_t hi = DEV(dev)->TIMEHR; /* read timehr to unlatch */
irq_restore(state);
return ((uint64_t)hi << 32U) | lo;
}
static inline void _timer_reset(tim_t dev)
{
unsigned state = irq_disable();
DEV(dev)->TIMELW = 0; /* always write timelw before timehw */
DEV(dev)->TIMEHW = 0; /* writes do not get copied to time until timehw is written */
irq_restore(state);
}
static inline void _timer_enable_periodic(tim_t dev, int channel, uint8_t flags)
{
_timer_flag_periodic[dev] |= (1U << channel);
if (flags & TIM_FLAG_RESET_ON_MATCH) {
_timer_flag_reset[dev] |= (1U << channel);
}
else {
_timer_flag_reset[dev] &= ~(1U << channel);
}
}
static inline void _timer_disable_periodic(tim_t dev, int channel)
{
_timer_flag_periodic[dev] &= ~(1U << channel);
}
static inline bool _timer_is_periodic(tim_t dev, int channel)
{
return !!(_timer_flag_periodic[dev] & (1U << channel));
}
static inline bool _timer_reset_on_match(tim_t dev, int channel)
{
return !!(_timer_flag_reset[dev] & (1U << channel));
}
static inline void _irq_enable(tim_t dev)
{
for (uint8_t i = 0; i < timer_config[dev].ch_numof; i++) {
NVIC_EnableIRQ(timer_config[dev].ch[i].irqn);
io_reg_atomic_set(&DEV(dev)->INTE.reg, (1U << i));
}
}
static void _isr(tim_t dev, int channel)
{
/* clear latched interrupt */
io_reg_atomic_clear(&DEV(dev)->INTR.reg, 1U << channel);
if (_timer_is_periodic(dev, channel)) {
if (_timer_reset_on_match(dev, channel)) {
_timer_reset(dev);
}
/* rearm */
*ALARM(dev, channel) = *ALARM(dev, channel);
}
if (_timer_ctx_cb[dev]) {
_timer_ctx_cb[dev](_timer_ctx_arg[dev], channel);
}
cortexm_isr_end();
}
int timer_init(tim_t dev, uint32_t freq, timer_cb_t cb, void *arg)
{
if (dev >= TIMER_NUMOF) {
return -ENODEV;
}
/* The timer must run at 1000000 Hz (µs precision)
because the number of cycles per µs is shared with the watchdog.
The reference clock (clk_ref) is divided by WATCHDOG->TICK.bits.CYCLES
to generate µs ticks.
*/
assert(freq == US_PER_SEC); (void)freq;
_timer_ctx_cb[dev] = cb;
_timer_ctx_arg[dev] = arg;
periph_reset(RESETS_RESET_timer_Msk);
periph_reset_done(RESETS_RESET_timer_Msk);
io_reg_write_dont_corrupt(&WATCHDOG->TICK.reg,
(CLOCK_XOSC / MHZ(1)) << WATCHDOG_TICK_CYCLES_Pos,
WATCHDOG_TICK_CYCLES_Msk);
_irq_enable(dev);
return 0;
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
if (dev >= TIMER_NUMOF) {
return -ENODEV;
}
if (channel < 0 || channel >= timer_config[dev].ch_numof) {
return -EINVAL;
}
if (!timeout) {
/* execute callback immediately if timeout equals 0,
to ctach the case that a tick happens right before arming the alarm
and causes a full timer period to elaps */
if (_timer_ctx_cb[dev]) {
_timer_ctx_cb[dev](_timer_ctx_arg[dev], channel);
}
}
else {
unsigned state = irq_disable();
_timer_disable_periodic(dev, channel);
/* an alarm interrupt matches on the lower 32 bit of the 64 bit timer counter */
uint64_t target = DEV(dev)->TIMERAWL + timeout;
*ALARM(dev, channel) = (uint32_t)target;
irq_restore(state);
}
return 0;
}
int timer_set_absolute(tim_t dev, int channel, unsigned int value)
{
if (dev >= TIMER_NUMOF) {
return -ENODEV;
}
if (channel < 0 || channel >= timer_config[dev].ch_numof) {
return -EINVAL;
}
unsigned state = irq_disable();
_timer_disable_periodic(dev, channel);
*ALARM(dev, channel) = (uint32_t)value;
irq_restore(state);
return 0;
}
int timer_set_periodic(tim_t dev, int channel, unsigned int value, uint8_t flags)
{
if (dev >= TIMER_NUMOF) {
return -ENODEV;
}
if (channel < 0 || channel >= timer_config[dev].ch_numof) {
return -EINVAL;
}
if (flags & TIM_FLAG_RESET_ON_SET) {
_timer_reset(dev);
}
unsigned state = irq_disable();
_timer_enable_periodic(dev, channel, flags);
*ALARM(dev, channel) = (uint32_t)value;
irq_restore(state);
return 0;
}
int timer_clear(tim_t dev, int channel)
{
if (dev >= TIMER_NUMOF) {
return -ENODEV;
}
if (channel < 0 || channel >= timer_config[dev].ch_numof) {
return -EINVAL;
}
/* ARMED bits are write clear */
io_reg_atomic_set(&DEV(dev)->ARMED.reg, (1 << channel));
unsigned state = irq_disable();
_timer_disable_periodic(dev, channel);
irq_restore(state);
return 0;
}
unsigned int timer_read(tim_t dev)
{
if (dev >= TIMER_NUMOF) {
return -ENODEV;
}
return _timer_read_us(dev);
}
void timer_start(tim_t dev)
{
assert(dev < TIMER_NUMOF);
io_reg_atomic_clear(&DEV(dev)->PAUSE.reg, (1 << TIMER_PAUSE_PAUSE_Pos));
}
void timer_stop(tim_t dev)
{
assert(dev < TIMER_NUMOF);
io_reg_atomic_set(&DEV(dev)->PAUSE.reg, (1 << TIMER_PAUSE_PAUSE_Pos));
}
/* timer 0 IRQ0 */
void TIMER_0_ISRA(void)
{
_isr(0, 0);
}
/* timer 0 IRQ1 */
void TIMER_0_ISRB(void)
{
_isr(0, 1);
}
/* timer 0 IRQ2 */
void TIMER_0_ISRC(void)
{
_isr(0, 2);
}
/* timer 0 IRQ3 */
void TIMER_0_ISRD(void)
{
_isr(0, 3);
}