2022-06-14 13:29:26 +02:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2022 Gunar Schorcht
|
|
|
|
*
|
|
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
|
|
* directory for more details.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
@defgroup cpu_esp32_esp32s2 ESP32-S2 family
|
|
|
|
@ingroup cpu_esp32
|
|
|
|
@brief Specific properties of ESP32-S2 variant (family)
|
|
|
|
@author Gunar Schorcht <gunar@schorcht.net>
|
|
|
|
|
|
|
|
\section esp32_riot_esp32s2 Specific properties of ESP32-S2 variant (family)
|
|
|
|
|
|
|
|
## Embedded Flash and SPI RAM {#esp32_embedded_flash_ram_esp32s2}
|
|
|
|
|
|
|
|
There are many different versions of the ESP32-S2 chip and ESP32-S2 modules
|
|
|
|
used on ESP32-S2 boards. They differ in the size of embedded Flash and SPI RAM
|
|
|
|
as well as used SPI mode for Flash and SPI RAM.
|
|
|
|
These differences allow dozens of different versions of a board. For example,
|
|
|
|
there are 8 versions of the ESP32-S2 DevKitC-1 board with different flash
|
|
|
|
and SPI RAM sizes.
|
|
|
|
|
|
|
|
<center>
|
|
|
|
| Chip | Flash (Mode) | SPI RAM (Mode)
|
|
|
|
|:--------------|:---------------:|:--------------
|
|
|
|
| ESP32-S2 | - | -
|
|
|
|
| ESP32-S2FH2 | 2 MB (Quad SPI) | -
|
|
|
|
| ESP32-S2FH4 | 4 MB (Quad SPI) | -
|
|
|
|
| ESP32-S2FN4R2 | 4 MB (Quad SPI) | 2 MB (Quad SPI)
|
|
|
|
| ESP32-S2R2 | - | 2 MB (Quad SPI)
|
|
|
|
</center>
|
|
|
|
<br>
|
|
|
|
|
|
|
|
<center>
|
|
|
|
| Module | Chip | Flash (Mode) | SPI RAM (Mode)
|
|
|
|
|:-------------------------|:--------------|:-----------------:|:--------------
|
|
|
|
| ESP32-S2-MINI-1x-H4 | ESP32-S2FH4 | 4 MB (Quad SPI) | -
|
|
|
|
| ESP32-S2-MINI-1x-N4 | ESP32-S2FH4 | 4 MB (Quad SPI) | -
|
|
|
|
| ESP32-S2-MINI-1x-N4R2 | ESP32-S2N4R2 | 4 MB (Quad SPI) | 2 MB (Quad SPI)
|
|
|
|
| ESP32-S2-SOLO-H4 | ESP32-S2 | 4 MB (Quad SPI) | -
|
|
|
|
| ESP32-S2-SOLO-N4 | ESP32-S2 | 4 MB (Quad SPI) | -
|
|
|
|
| ESP32-S2-SOLO-N4R2 | ESP32-S2R2 | 4 MB (Quad SPI) | 2 MB (Quad SPI)
|
|
|
|
| ESP32-S2-WROOM | ESP32-S2 | 4 MB (Quad SPI) | -
|
|
|
|
| ESP32-S2-WROVER | ESP32-S2 | 4 MB (Quad SPI) | 2 MB (Quad SPI)
|
|
|
|
</center>
|
|
|
|
<b>x</b> Stands for the module versions with and without U (external antenna connector).
|
|
|
|
<br>
|
|
|
|
|
|
|
|
Depending on the chip or module used, it has to be specified as a feature in
|
|
|
|
the board definition whether SPI RAM is available (feature \ref esp32_spi_ram
|
|
|
|
"esp_spi_ram").
|
|
|
|
|
|
|
|
If the feature `esp_spi_ram` is given, the SPI RAM can be used as heap by
|
|
|
|
using the pseudo module `esp_spi_ram`.
|
|
|
|
|
|
|
|
If **Quad SPI mode** is used, **GPIO26 ... GPIO32** are occupied and cannot be
|
|
|
|
used for other purposes. In case of **Octal SPI mode**, the pseudomodule
|
|
|
|
`esp_spi_oct` is additionally enabled and **GPIO33 ... GPIO37** are occupied
|
|
|
|
if the SPI RAM is enabled by using the pseudomodule `esp_spi_ram`.
|
|
|
|
GPIO33 ... GPIO37 are then not available for other purposes.
|
|
|
|
Conflicts may occur when using these GPIOs.
|
|
|
|
|
|
|
|
## GPIO pins {#esp32_gpio_pins_esp32s2}
|
|
|
|
|
|
|
|
ESP32-S2 has 45 GPIO pins, where a subset can be used as ADC channel and as
|
|
|
|
low-power digital input/output in deep-sleep mode, the so-called RTC GPIOs.
|
|
|
|
Some of them are used by special SoC components and are not broken out on
|
|
|
|
all ESP32-S2 modules. The following table gives a short overview.
|
|
|
|
|
|
|
|
<center>
|
|
|
|
|
|
|
|
Pin | Type | ADC | RTC | PU / PD | Special function | Remarks
|
|
|
|
-------|:-------|:---:|:----:|:-------:|------------------|--------
|
|
|
|
GPIO0 | In/Out | - | X | X | - | Bootstrapping
|
|
|
|
GPIO1 | In/Out | X | X | X | - | -
|
|
|
|
GPIO2 | In/Out | X | X | X | - | -
|
|
|
|
GPIO3 | In/Out | X | X | X | - | Bootstrapping
|
|
|
|
GPIO4 | In/Out | X | X | X | - | -
|
|
|
|
GPIO5 | In/Out | X | X | X | - | -
|
|
|
|
GPIO6 | In/Out | X | X | X | - | -
|
|
|
|
GPIO7 | In/Out | X | X | X | - | -
|
|
|
|
GPIO8 | In/Out | X | X | X | - | -
|
|
|
|
GPIO9 | In/Out | X | X | X | - | -
|
|
|
|
GPIO10 | In/Out | X | X | X | - | -
|
|
|
|
GPIO11 | In/Out | X | X | X | - | -
|
|
|
|
GPIO12 | In/Out | X | X | X | - | -
|
|
|
|
GPIO13 | In/Out | X | X | X | - | -
|
|
|
|
GPIO14 | In/Out | X | X | X | - | -
|
|
|
|
GPIO15 | In/Out | X | X | X | XTAL_32K_P | External 32k crystal
|
|
|
|
GPIO16 | In/Out | X | X | X | XTAL_32K_N | External 32k crystal
|
2023-02-17 12:39:01 +01:00
|
|
|
GPIO17 | In/Out | X | X | X | DAC1 | -
|
|
|
|
GPIO18 | In/Out | X | X | X | DAC2 | -
|
2022-06-14 13:29:26 +02:00
|
|
|
GPIO19 | In/Out | X | X | X | USB D- | USB 2.0 OTG / USB-JTAG bridge
|
|
|
|
GPIO20 | In/Out | X | X | X | USB D+ | USB 2.0 OTG / USB-JTAG bridge
|
|
|
|
GPIO21 | In/Out | - | X | X | - | -
|
|
|
|
GPIO26 | In/Out | - | - | X | Flash/PSRAM SPICS1 | not available if SPI RAM is used
|
|
|
|
GPIO27 | In/Out | - | - | X | Flash/PSRAM SPIHD | not available
|
|
|
|
GPIO28 | In/Out | - | - | X | Flash/PSRAM SPIWP | not available
|
|
|
|
GPIO29 | In/Out | - | - | X | Flash/PSRAM SPICS0 | not available
|
|
|
|
GPIO30 | In/Out | - | - | X | Flash/PSRAM SPICLK | not available
|
|
|
|
GPIO31 | In/Out | - | - | X | Flash/PSRAM SPIQ | not available
|
|
|
|
GPIO32 | In/Out | - | - | X | Flash/PSRAM SPID | not available
|
|
|
|
GPIO33 | In/Out | - | - | X | Flash/PSRAM SPIQ4 | not available if octal Flash or SPI RAM is used
|
|
|
|
GPIO34 | In/Out | - | - | X | Flash/PSRAM SPIQ5 | not available if octal Flash or SPI RAM is used
|
|
|
|
GPIO35 | In/Out | - | - | X | Flash/PSRAM SPIQ6 | not available if octal Flash or SPI RAM is used
|
|
|
|
GPIO36 | In/Out | - | - | X | Flash/PSRAM SPIQ7 | not available if octal Flash or SPI RAM is used
|
|
|
|
GPIO37 | In/Out | - | - | X | Flash/PSRAM SPIQ8 | not available if octal Flash or SPI RAM is used
|
|
|
|
GPIO38 | In/Out | - | - | X | Flash/PSRAM SPIDQS | not available if octal Flash or SPI RAM is used
|
|
|
|
GPIO39 | In/Out | - | - | X | MTCK | JTAG interface
|
|
|
|
GPIO40 | In/Out | - | - | X | MTDO | JTAG interface
|
|
|
|
GPIO41 | In/Out | - | - | X | MTDI | JTAG interface
|
|
|
|
GPIO42 | In/Out | - | - | X | MTMS | JTAG interface
|
|
|
|
GPIO43 | In/Out | - | - | X | UART0 TX | Console
|
|
|
|
GPIO44 | In/Out | - | - | X | UART0 RX | Console
|
|
|
|
GPIO45 | In/Out | - | - | X | - | Bootstrapping (0 - 3.3V, 1 - 1.8V)
|
|
|
|
GPIO46 | In/Out | - | - | X | - | Bootstrapping
|
|
|
|
GPIO47 | In/Out | - | - | X | SPICLK_P | -
|
|
|
|
GPIO48 | In/Out | - | - | X | SPICLK_N | -
|
|
|
|
|
|
|
|
</center>
|
|
|
|
<b>PSRAM</b> - Stands for pseudo-static RAM and refers to the SPI RAM.
|
|
|
|
<br>
|
|
|
|
|
|
|
|
<b>ADC:</b> Pins that can be used as ADC channels.<br>
|
|
|
|
<b>RTC:</b> Pins that are RTC GPIOs and can be used in deep-sleep mode.<br>
|
|
|
|
<b>PU/PD:</b> Pins that have software configurable pull-up/pull-down functionality.<br>
|
|
|
|
|
|
|
|
GPIO0, GPIO3, GPIO45 and GPIO46 are bootstrapping. GPIO0 and GPIO46 pins are
|
|
|
|
used to boot ESP32-S2 in different modes:
|
|
|
|
|
|
|
|
<center>
|
|
|
|
|
|
|
|
GPIO0 | GPIO46 | Mode
|
|
|
|
:----:|:------:|----------
|
|
|
|
1 | X | SPI Boot mode to boot the firmware from flash (default mode)
|
|
|
|
0 | 1 | Download Boot mode for flashing the firmware
|
|
|
|
|
|
|
|
</center><br>
|
|
|
|
|
|
|
|
If `EFUSE_STRAP_JTAG_SEL` is set, GPIO3 is used to select the interface that
|
|
|
|
is used as JTAG interface.
|
|
|
|
|
|
|
|
<center>
|
|
|
|
|
|
|
|
GPIO3 | Mode
|
|
|
|
:----:|------------------------
|
|
|
|
1 | USB-JTAG bridge at GPIO19 and GPIO20 is used as JTAG interface
|
|
|
|
0 | GPIO39 to GPIO42 are used as JTAG interface
|
|
|
|
|
|
|
|
</center><br>
|
|
|
|
|
|
|
|
@note `If EFUSE_DIS_USB_JTAG` or `EFUSE_DIS_PAD_JTAG` are set, the interface
|
|
|
|
selection is fixed and GPIO3 is not used as bootstrapping pin.
|
|
|
|
|
|
|
|
GPIO45 is used to select the voltage `VDD_SPI` for the Flash/PSRAM interfaces
|
|
|
|
SPI0 and SPI1.
|
|
|
|
|
|
|
|
## ADC Channels {#esp32_adc_channels_esp32s2}
|
|
|
|
|
|
|
|
ESP32-S2 integrates two 12-bit ADCs (ADC1 and ADC2) with 20 channels in
|
|
|
|
total:
|
|
|
|
|
|
|
|
- **ADC1** supports 10 channels: GPIO1 ... GPIO10
|
|
|
|
- **ADC2** supports 10 channels: GPIO11 ... GPIO20
|
|
|
|
|
|
|
|
@note
|
|
|
|
- ADC2 is also used by the WiFi module. The GPIOs connected to ADC2 are
|
|
|
|
therefore not available as ADC channels if the modules `esp_wifi` or
|
|
|
|
`esp_now` are used.
|
|
|
|
- Vref can be read with function #adc_line_vref_to_gpio at any ADC2 channel,
|
|
|
|
that is at GPIO11 ... GPIO20.
|
|
|
|
- GPIO3 is a strapping pin und shouldn't be used as ADC channel
|
|
|
|
|
2023-02-17 12:39:01 +01:00
|
|
|
## DAC Channels {#esp32_dac_channels_esp32s2}
|
|
|
|
|
|
|
|
ESP32 SoC supports 2 DAC lines at GPIO17 and GPIO18.
|
|
|
|
|
2022-06-14 13:29:26 +02:00
|
|
|
## I2C Interfaces {#esp32_i2c_interfaces_esp32s2}
|
|
|
|
|
|
|
|
ESP32-S2 has two built-in I2C interfaces.
|
|
|
|
|
|
|
|
The following table shows the default configuration of I2C interfaces
|
|
|
|
used for ESP32-S2 boards. It can be overridden by
|
|
|
|
[application-specific configurations](#esp32_application_specific_configurations).
|
|
|
|
|
|
|
|
<center>
|
|
|
|
|
|
|
|
Device | Signal | Pin | Symbol | Remarks
|
|
|
|
:----------|:-------|:-------|:--------------|:----------------
|
|
|
|
I2C_DEV(0) | | | `#I2C0_SPEED` | default is `I2C_SPEED_FAST`
|
|
|
|
I2C_DEV(0) | SCL | GPIO9 | `#I2C0_SCL` | -
|
|
|
|
I2C_DEV(0) | SDA | GPIO8 | `#I2C0_SDA` | -
|
|
|
|
|
|
|
|
</center><br>
|
|
|
|
|
|
|
|
## PWM Channels {#esp32_pwm_channels_esp32s2}
|
|
|
|
|
|
|
|
The ESP32-S2 LEDC module has 1 channel group with 8 channels. Each of
|
|
|
|
these channels can be clocked by one of the 4 timers.
|
|
|
|
|
|
|
|
## SPI Interfaces {#esp32_spi_interfaces_esp32s2}
|
|
|
|
|
|
|
|
ESP32-S2 has four SPI controllers where SPI0 and SPI1 share the same bus
|
|
|
|
and can only operate in memory mode while SPI2 and SPI3 can be used as general
|
|
|
|
purpose SPI:
|
|
|
|
|
|
|
|
- controller SPI0 is reserved for external memories like Flash and PSRAM
|
|
|
|
- controller SPI1 is reserved for external memories like Flash and PSRAM
|
|
|
|
- controller SPI2 can be used for peripherals (also called FSPI)
|
|
|
|
- controller SPI3 can be used for peripherals
|
|
|
|
|
|
|
|
Thus, SPI2 (`FSPI`) and SPI3 can be used as general purpose SPI in
|
|
|
|
RIOT as SPI_DEV(0) and SPI_DEV(1) by defining the symbols `SPI0_*`
|
|
|
|
and `SPI1_*`.
|
|
|
|
|
|
|
|
The following table shows the pin configuration used by default, even
|
|
|
|
though it **can vary** from board to board.
|
|
|
|
|
|
|
|
<center>
|
|
|
|
|
|
|
|
Device | Signal | Pin | Symbol | Remarks
|
|
|
|
:-----------------------|:------:|:-------|:-----------:|:---------------------------
|
2023-07-05 14:32:14 +02:00
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPICS0 | GPIO29 | - | reserved for flash and PSRAM
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPICS1 | GPIO26 | - | reserved for flash and PSRAM
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPICLK | GPIO30 | - | reserved for flash and PSRAM
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPID | GPIO32 | - | reserved for flash and PSRAM
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIQ | GPIO31 | - | reserved for flash and PSRAM
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIHD | GPIO27 | - | reserved for flash and PSRAM (only in `qio` or `qout` mode)
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIWP | GPIO28 | - | reserved for flash and PSRAM (only in `qio` or `qout` mode)
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIIO4 | GPIO33 | - | reserved for Flash and PSRAM (only in octal mode)
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIIO5 | GPIO34 | - | reserved for Flash and PSRAM (only in octal mode)
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIIO6 | GPIO35 | - | reserved for Flash and PSRAM (only in octal mode)
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIIO7 | GPIO36 | - | reserved for Flash and PSRAM (only in octal mode)
|
|
|
|
`SPI0_HOST`/`SPI1_HOST` | SPIDQA | GPIO37 | - | reserved for Flash and PSRAM (only in octal mode)
|
|
|
|
`SPI2_HOST` (`FSPI`) | SCK | GPIO12 |`#SPI0_SCK` | can be used
|
|
|
|
`SPI2_HOST` (`FSPI`) | MOSI | GPIO11 |`#SPI0_MOSI` | can be used
|
|
|
|
`SPI2_HOST` (`FSPI`) | MISO | GPIO13 |`#SPI0_MISO` | can be used
|
|
|
|
`SPI2_HOST` (`FSPI`) | CS0 | GPIO10 |`#SPI0_CS0` | can be used
|
2022-06-14 13:29:26 +02:00
|
|
|
|
|
|
|
</center><br>
|
|
|
|
|
|
|
|
## Timers {#esp32_timers_esp32s2}
|
|
|
|
|
|
|
|
ESP32-S2 has two timer groups with two timers each, resulting in a total of
|
|
|
|
four timers. Since one timer is used as system timer, up to three timers
|
|
|
|
with one channel each can be used in RIOT as timer devices
|
|
|
|
TIMER_DEV(0) ... TIMER_DEV(2).
|
|
|
|
|
|
|
|
Additionally ESP32-S2 has three CCOMPARE registers which can be used
|
|
|
|
alternatively as timer devices TIMER_DEV(0) ... TIMER_DEV(2) can be used
|
|
|
|
in RIOT if the module `esp_hw_counter` is enabled.
|
|
|
|
|
|
|
|
## UART Interfaces {#esp32_uart_interfaces_esp32s2}
|
|
|
|
|
|
|
|
ESP32 integrates three UART interfaces. The following default pin
|
|
|
|
configuration of UART interfaces as used by a most boards can be overridden
|
|
|
|
by the application, see section [Application-Specific Configurations]
|
|
|
|
(#esp32_application_specific_configurations).
|
|
|
|
|
|
|
|
<center>
|
|
|
|
|
|
|
|
Device |Signal|Pin |Symbol |Remarks
|
|
|
|
:-----------|:-----|:-------|:-----------|:----------------
|
|
|
|
UART_DEV(0) | TxD | GPIO43 |`#UART0_TXD`| cannot be changed
|
|
|
|
UART_DEV(0) | RxD | GPIO44 |`#UART0_RXD`| cannot be changed
|
|
|
|
UART_DEV(1) | TxD | GPIO17 |`#UART1_TXD`| optional, can be overridden
|
|
|
|
UART_DEV(1) | RxD | GPIO18 |`#UART1_RXD`| optional, can be overridden
|
|
|
|
UART_DEV(2) | TxD | - |`UART2_TXD` | optional, can be overridden
|
|
|
|
UART_DEV(2) | RxD | - |`UART2_RXD` | optional, can be overridden
|
|
|
|
|
|
|
|
</center><br>
|
|
|
|
|
|
|
|
## JTAG Interface {#esp32_jtag_interface_esp32s2}
|
|
|
|
|
|
|
|
There are two options on how to use the JTAG interface on ESP32-S2:
|
|
|
|
|
|
|
|
1. Using the built-in USB-to-JTAG bridge connected to an USB cable as follows:
|
|
|
|
USB Signal | ESP32-S2 Pin
|
|
|
|
:--------------|:-----------
|
|
|
|
D- (white) | GPIO19
|
|
|
|
D+ (green) | GPIO20
|
|
|
|
V_Bus (red) | 5V
|
|
|
|
Ground (black) | GND
|
|
|
|
<br>
|
|
|
|
@note This option requires that the USB D- and USB D+ signals are connected
|
|
|
|
to the ESP32-S2 USB interface at GPIO19 and GPIO20.
|
|
|
|
|
|
|
|
2. Using an external JTAG adapter connected to the JTAG interface exposed
|
|
|
|
to GPIOs as follows:
|
|
|
|
JTAG Signal | ESP32S2 Pin
|
|
|
|
:-----------|:-----------
|
|
|
|
TRST_N | CHIP_PU
|
|
|
|
TDO | GPIO40 (MTDO)
|
|
|
|
TDI | GPIO41 (MTDI)
|
|
|
|
TCK | GPIO39 (MTCK)
|
|
|
|
TMS | GPIO42 (MTMS)
|
|
|
|
GND | GND
|
|
|
|
|
|
|
|
|
|
|
|
Using the built-in USB-to-JTAG is the default option, i.e. the JTAG interface
|
|
|
|
of the ESP32-S2 is connected to the built-in USB-to-JTAG bridge. To use an
|
|
|
|
external JTAG adapter, the JTAG interface of the ESP32-S2 has to be connected
|
|
|
|
to the GPIOs as shown above. For this purpose eFuses have to be burned with
|
|
|
|
the following command:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
espefuse.py burn_efuse JTAG_SEL_ENABLE --port /dev/ttyUSB0
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
Once the eFuses are burned with this command and option `JTAG_SEL_ENABLE`,
|
|
|
|
GPIO3 is used as a bootstrapping pin to choose between the two options.
|
|
|
|
If GPIO3 is HIGH when ESP32-S2 is reset, the JTAG interface is connected
|
|
|
|
to the built-in USB to JTAG bridge and the USB cable can be used for on-chip
|
|
|
|
debugging. Otherwise, the JTAG interface is exposed to GPIO39 ... GPIO42
|
|
|
|
and an external JTAG adapter has to be used.
|
|
|
|
|
|
|
|
Alternatively, the integrated USB-to-JTAG bridge can be permanently disabled
|
|
|
|
with the following command:
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
espefuse.py burn_efuse DIS_USB_JTAG --port /dev/ttyUSB0
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
Once the eFuses are burned with this command and option `DIS_USB_JTAG`,
|
|
|
|
the JTAG interface is always exposed to GPIO4 ... GPIO7 and an external
|
|
|
|
JTAG adapter has to be used.
|
|
|
|
|
|
|
|
@note Burning eFuses is an irreversible operation.
|
|
|
|
|
|
|
|
For more information about JTAG configuration for ESP32-S2, refer to the
|
|
|
|
section [Configure Other JTAG Interface]
|
|
|
|
(https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/jtag-debugging/configure-other-jtag.html)
|
|
|
|
in the ESP-IDF documentation.
|
|
|
|
|
|
|
|
*/
|