1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-15 20:32:43 +01:00
RIOT/cpu/esp32/periph/i2c_hw.c

887 lines
29 KiB
C
Raw Normal View History

2018-10-08 12:20:49 +02:00
/*
* Copyright (C) 2018 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_esp32
* @ingroup drivers_periph_i2c
* @{
*
* @file
* @brief Low-level I2C driver implementation for ESP32 SDK
*
* @note The hardware implementation seems to be very poor and faulty.
* I2C commands in the I2C command pipeline are not executed
* sporadically. A number of ACK errors and timeouts caused by
* protocol errors are the result. You should use the hardware
* implementation only if they can be tolerated.
*
* @author Gunar Schorcht <gunar@schorcht.net>
*
* @}
*/
#if defined(MODULE_ESP_I2C_HW) /* hardware implementation used */
/**
* PLEASE NOTE:
*
* Some parts of the implementation were inspired by the Espressif IoT
* Development Framework [ESP-IDF](https://github.com/espressif/esp-idf.git)
* implementation of I2C. These partes are marked with an according copyright
* notice.
*/
#define ENABLE_DEBUG (0)
#include "debug.h"
2019-08-22 11:54:09 +02:00
#include <assert.h>
2018-10-08 12:20:49 +02:00
#include <errno.h>
#include <stdbool.h>
#include <string.h>
#include "cpu.h"
#include "log.h"
#include "mutex.h"
#include "periph_conf.h"
#include "periph/gpio.h"
#include "periph/i2c.h"
#include "thread_flags.h"
#include "esp_common.h"
#include "gpio_arch.h"
#include "driver/periph_ctrl.h"
#include "irq_arch.h"
#include "rom/ets_sys.h"
#include "soc/gpio_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/gpio_struct.h"
#include "soc/i2c_reg.h"
#include "soc/i2c_struct.h"
#include "soc/rtc.h"
#include "soc/soc.h"
#include "syscalls.h"
#include "xtensa/xtensa_api.h"
#if defined(I2C0_SPEED) || defined(I2C1_SPEED)
#undef I2C_CLK_FREQ
#define I2C_CLK_FREQ rtc_clk_apb_freq_get() /* APB_CLK is used */
/* operation codes used for commands */
#define I2C_CMD_RSTART 0
#define I2C_CMD_WRITE 1
#define I2C_CMD_READ 2
#define I2C_CMD_STOP 3
#define I2C_CMD_END 4
/* maximum number of data that can be written / read in one transfer */
#define I2C_MAX_DATA 30
#define I2C_FIFO_USED 1
struct i2c_hw_t {
i2c_dev_t* regs; /* pointer to register data struct of the I2C device */
uint8_t mod; /* peripheral hardware module of the I2C interface */
uint8_t int_src; /* peripheral interrupt source used by the I2C device */
uint8_t signal_scl_in; /* SCL signal to the controller */
uint8_t signal_scl_out; /* SCL signal from the controller */
uint8_t signal_sda_in; /* SDA signal to the controller */
uint8_t signal_sda_out; /* SDA signal from the controller */
};
static const struct i2c_hw_t _i2c_hw[] = {
{
.regs = &I2C0,
.mod = PERIPH_I2C0_MODULE,
.int_src = ETS_I2C_EXT0_INTR_SOURCE,
.signal_scl_in = I2CEXT0_SCL_IN_IDX,
.signal_scl_out = I2CEXT0_SCL_OUT_IDX,
.signal_sda_in = I2CEXT0_SDA_IN_IDX,
.signal_sda_out = I2CEXT0_SDA_OUT_IDX,
},
{
.regs = &I2C1,
.mod = PERIPH_I2C1_MODULE,
.int_src = ETS_I2C_EXT1_INTR_SOURCE,
.signal_scl_in = I2CEXT1_SCL_IN_IDX,
.signal_scl_out = I2CEXT1_SCL_OUT_IDX,
.signal_sda_in = I2CEXT1_SDA_IN_IDX,
.signal_sda_out = I2CEXT1_SDA_OUT_IDX,
}
};
struct _i2c_bus_t
{
i2c_speed_t speed; /* bus speed */
uint8_t cmd; /* command index */
uint8_t data; /* index in RAM for data */
mutex_t lock; /* mutex lock */
kernel_pid_t pid; /* PID of thread that triggered a transfer */
uint32_t results; /* results of a transfer */
};
static struct _i2c_bus_t _i2c_bus[I2C_NUMOF] = {};
2018-10-08 12:20:49 +02:00
/* forward declaration of internal functions */
static int _i2c_init_pins (i2c_t dev);
static void _i2c_start_cmd (i2c_t dev);
static void _i2c_stop_cmd (i2c_t dev);
static void _i2c_end_cmd (i2c_t dev);
static void _i2c_write_cmd (i2c_t dev, const uint8_t* data, uint8_t len);
static void _i2c_read_cmd (i2c_t dev, uint8_t* data, uint8_t len, bool last);
static void _i2c_transfer (i2c_t dev);
static void _i2c_reset_hw (i2c_t dev);
static void _i2c_clear_bus (i2c_t dev);
static void _i2c_intr_handler (void *arg);
static inline void _i2c_delay (uint32_t delay);
/* implementation of i2c interface */
void i2c_init(i2c_t dev)
{
CHECK_PARAM (dev < I2C_NUMOF)
2018-10-08 12:20:49 +02:00
if (i2c_config[dev].speed == I2C_SPEED_FAST_PLUS ||
i2c_config[dev].speed == I2C_SPEED_HIGH) {
2018-10-08 12:20:49 +02:00
LOG_TAG_INFO("i2c", "I2C_SPEED_FAST_PLUS and I2C_SPEED_HIGH "
"are not supported\n");
return;
}
mutex_init(&_i2c_bus[dev].lock);
2018-10-08 12:20:49 +02:00
i2c_acquire (dev);
_i2c_bus[dev].cmd = 0;
_i2c_bus[dev].data = 0;
_i2c_bus[dev].speed = i2c_config[dev].speed;
2018-10-08 12:20:49 +02:00
DEBUG ("%s scl=%d sda=%d speed=%d\n", __func__,
i2c_config[dev].scl, i2c_config[dev].sda, _i2c_bus[dev].speed);
2018-10-08 12:20:49 +02:00
/* enable (power on) the according I2C module */
periph_module_enable(_i2c_hw[dev].mod);
/* initialize pins */
if (_i2c_init_pins(dev) != 0) {
return;
}
/* set master mode */
_i2c_hw[dev].regs->ctr.ms_mode = 1;
/* set bit order to MSB first */
_i2c_hw[dev].regs->ctr.tx_lsb_first = 0;
_i2c_hw[dev].regs->ctr.rx_lsb_first = 0;
/* determine the half period of clock in APB clock cycles */
uint32_t half_period = 0;
switch (_i2c_bus[dev].speed) {
case I2C_SPEED_LOW:
/* 10 kbps (period 100 us) */
half_period = (I2C_CLK_FREQ / 10000) >> 1;
break;
case I2C_SPEED_NORMAL:
/* 100 kbps (period 10 us) */
half_period = (I2C_CLK_FREQ / 100000) >> 1;
half_period = half_period * 95 / 100; /* correction factor */
break;
case I2C_SPEED_FAST:
/* 400 kbps (period 2.5 us) */
half_period = (I2C_CLK_FREQ / 400000) >> 1;
half_period = half_period * 82 / 100; /* correction factor */
break;
case I2C_SPEED_FAST_PLUS:
/* 1 Mbps (period 1 us) not working */
half_period = (I2C_CLK_FREQ / 1000000) >> 1;
break;
case I2C_SPEED_HIGH:
/* 3.4 Mbps (period 0.3 us) not working */
half_period = (I2C_CLK_FREQ / 3400000) >> 1;
break;
default:
LOG_TAG_ERROR("i2c", "Invalid speed value in %s\n", __func__);
return;
}
/* set an timeout which is at least 16 times of half cycle */
_i2c_hw[dev].regs->timeout.tout = half_period << 4;
/* timing for SCL (low and high time in APB clock cycles) */
_i2c_hw[dev].regs->scl_low_period.period = half_period;
_i2c_hw[dev].regs->scl_high_period.period = half_period;
/* timing for SDA (sample time after rising edge and hold time after falling edge) */
_i2c_hw[dev].regs->sda_sample.time = half_period >> 1;
_i2c_hw[dev].regs->sda_hold.time = half_period >> 1;
/* timing for START condition (START hold and repeated START setup time) */
_i2c_hw[dev].regs->scl_start_hold.time = half_period >> 1;
_i2c_hw[dev].regs->scl_rstart_setup.time = half_period >> 1;
/* timing for STOP condition (STOP hold and STOP setup time) */
_i2c_hw[dev].regs->scl_stop_hold.time = half_period >> 1;
_i2c_hw[dev].regs->scl_stop_setup.time = half_period >> 1;
/* configure open drain outputs */
_i2c_hw[dev].regs->ctr.scl_force_out = 1;
_i2c_hw[dev].regs->ctr.sda_force_out = 1;
/* sample data during high level */
_i2c_hw[dev].regs->ctr.sample_scl_level = 0;
/* enable non FIFO access and disable slave FIFO address offset */
#if I2C_FIFO_USED
_i2c_hw[dev].regs->fifo_conf.nonfifo_en = 0;
#else
_i2c_hw[dev].regs->fifo_conf.nonfifo_en = 1;
_i2c_hw[dev].regs->fifo_conf.nonfifo_rx_thres = 0;
_i2c_hw[dev].regs->fifo_conf.nonfifo_tx_thres = 0;
_i2c_hw[dev].regs->fifo_conf.rx_fifo_full_thrhd = 0;
_i2c_hw[dev].regs->fifo_conf.tx_fifo_empty_thrhd = 0;
#endif
_i2c_hw[dev].regs->fifo_conf.fifo_addr_cfg_en = 0;
/* route all I2C interrupt sources to same the CPU interrupt */
intr_matrix_set(PRO_CPU_NUM, _i2c_hw[dev].int_src, CPU_INUM_I2C);
/* set the interrupt handler and enable the interrupt */
xt_set_interrupt_handler(CPU_INUM_I2C, _i2c_intr_handler, NULL);
xt_ints_on(BIT(CPU_INUM_I2C));
i2c_release (dev);
return;
}
int i2c_acquire(i2c_t dev)
{
DEBUG ("%s\n", __func__);
CHECK_PARAM_RET (dev < I2C_NUMOF, -1)
2018-10-08 12:20:49 +02:00
mutex_lock(&_i2c_bus[dev].lock);
_i2c_reset_hw(dev);
return 0;
}
2019-08-22 11:54:09 +02:00
void i2c_release(i2c_t dev)
2018-10-08 12:20:49 +02:00
{
DEBUG ("%s\n", __func__);
2019-08-22 11:54:09 +02:00
assert(dev < I2C_NUMOF);
2018-10-08 12:20:49 +02:00
_i2c_reset_hw (dev);
mutex_unlock(&_i2c_bus[dev].lock);
}
/*
* This macro checks the result of a read transfer. In case of an error,
* the hardware is reset and returned with a corresponding error code.
*
* @note:
* In a read transfer, an ACK is only expected for the address field. Thus,
* an ACK error can only happen for the address field. Therefore, we always
* return -ENXIO in case of an ACK error.
*/
#define _i2c_return_on_error_read(dev) \
if (_i2c_bus[dev].results & I2C_ARBITRATION_LOST_INT_ENA) { \
LOG_TAG_DEBUG("i2c", "arbitration lost dev=%u\n", dev); \
_i2c_reset_hw (dev); \
__asm__ volatile ("isync"); \
return -EAGAIN; \
} \
else if (_i2c_bus[dev].results & I2C_ACK_ERR_INT_ENA) { \
LOG_TAG_DEBUG("i2c", "ack error dev=%u\n", dev); \
_i2c_reset_hw (dev); \
__asm__ volatile ("isync"); \
return -ENXIO; \
} \
else if (_i2c_bus[dev].results & I2C_TIME_OUT_INT_ENA) { \
LOG_TAG_DEBUG("i2c", "bus timeout dev=%u\n", dev); \
_i2c_reset_hw (dev); \
__asm__ volatile ("isync"); \
return -ETIMEDOUT; \
}
/*
* This macro checks the result of a write transfer. In case of an error,
* the hardware is reset and returned with a corresponding error code.
*
* @note:
* In a write transfer, an ACK error can happen for the address field
* as well as for data. If the FIFO still contains all data bytes,
* (i.e. _i2c_hw[dev].regs->status_reg.tx_fifo_cnt >= len), the ACK error
* happened in address field and we have to returen -ENXIO. Otherwise, the
* ACK error happened in data field and we have to return -EIO.
*/
#define _i2c_return_on_error_write(dev) \
2018-10-08 12:20:49 +02:00
if (_i2c_bus[dev].results & I2C_ARBITRATION_LOST_INT_ENA) { \
LOG_TAG_DEBUG("i2c", "arbitration lost dev=%u\n", dev); \
2018-10-08 12:20:49 +02:00
_i2c_reset_hw (dev); \
__asm__ volatile ("isync"); \
2018-10-08 12:20:49 +02:00
return -EAGAIN; \
} \
else if (_i2c_bus[dev].results & I2C_ACK_ERR_INT_ENA) { \
LOG_TAG_DEBUG("i2c", "ack error dev=%u\n", dev); \
2018-10-08 12:20:49 +02:00
_i2c_reset_hw (dev); \
__asm__ volatile ("isync"); \
if (_i2c_hw[dev].regs->status_reg.tx_fifo_cnt >= len) { \
return -ENXIO; \
} \
else { \
return -EIO; \
} \
2018-10-08 12:20:49 +02:00
} \
else if (_i2c_bus[dev].results & I2C_TIME_OUT_INT_ENA) { \
LOG_TAG_DEBUG("i2c", "bus timeout dev=%u\n", dev); \
2018-10-08 12:20:49 +02:00
_i2c_reset_hw (dev); \
__asm__ volatile ("isync"); \
2018-10-08 12:20:49 +02:00
return -ETIMEDOUT; \
}
int i2c_read_bytes(i2c_t dev, uint16_t addr, void *data, size_t len, uint8_t flags)
{
DEBUG ("%s dev=%u addr=%02x data=%p len=%d flags=%01x\n",
__func__, dev, addr, data, len, flags);
CHECK_PARAM_RET (dev < I2C_NUMOF, -EINVAL);
2018-10-08 12:20:49 +02:00
CHECK_PARAM_RET (len > 0, -EINVAL);
CHECK_PARAM_RET (data != NULL, -EINVAL);
/* if I2C_NOSTART is not set, START condition and ADDR is used */
if (!(flags & I2C_NOSTART)) {
/* send START condition */
_i2c_start_cmd (dev);
/* address handling */
if (flags & I2C_ADDR10) {
/* prepare 10 bit address bytes */
uint8_t addr10[2];
addr10[0] = 0xf0 | (addr & 0x0300) >> 7 | I2C_READ;
addr10[1] = addr & 0xff;
/* send ADDR with read flag */
_i2c_write_cmd (dev, addr10, 2);
}
else {
/* send ADDR with read flag */
uint8_t addr7 = (addr << 1 | I2C_READ);
_i2c_write_cmd (dev, &addr7, 1);
}
}
/* read data bytes in blocks of I2C_MAX_DATA bytes */
uint32_t off = 0;
/* if len > I2C_MAX_DATA read blocks I2C_MAX_DATA bytes at a time */
while (len > I2C_MAX_DATA) {
/* read one block of data bytes command */
_i2c_read_cmd (dev, data, I2C_MAX_DATA, false);
_i2c_end_cmd (dev);
_i2c_transfer (dev);
_i2c_return_on_error_read (dev);
2018-10-08 12:20:49 +02:00
/* if transfer was successful, fetch the data from I2C RAM */
for (unsigned i = 0; i < I2C_MAX_DATA; i++) {
#if I2C_FIFO_USED
((uint8_t*)data)[i + off] = _i2c_hw[dev].regs->fifo_data.data;
#else
((uint8_t*)data)[i + off] = _i2c_hw[dev].regs->ram_data[i];
#endif
}
len -= I2C_MAX_DATA;
off += I2C_MAX_DATA;
}
/* read remaining data bytes command with a final NAK */
_i2c_read_cmd (dev, data, len, true);
/* if I2C_NOSTOP flag is not set, send STOP condition is used */
if (!(flags & I2C_NOSTOP)) {
/* send STOP condition */
_i2c_stop_cmd (dev);
}
else {
/* otherwise place end command in pipeline */
_i2c_end_cmd (dev);
}
/* finish operation by executing the command pipeline */
_i2c_transfer (dev);
_i2c_return_on_error_read (dev);
2018-10-08 12:20:49 +02:00
/* if transfer was successful, fetch data from I2C RAM */
for (unsigned i = 0; i < len; i++) {
#if I2C_FIFO_USED
((uint8_t*)data)[i + off] = _i2c_hw[dev].regs->fifo_data.data;
#else
((uint8_t*)data)[i + off] = _i2c_hw[dev].regs->ram_data[i];
#endif
}
/* return 0 on success */
return 0;
}
int i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data, size_t len, uint8_t flags)
{
DEBUG ("%s dev=%u addr=%02x data=%p len=%d flags=%01x\n",
__func__, dev, addr, data, len, flags);
CHECK_PARAM_RET (dev < I2C_NUMOF, -EINVAL);
2018-10-08 12:20:49 +02:00
CHECK_PARAM_RET (len > 0, -EINVAL);
CHECK_PARAM_RET (data != NULL, -EINVAL);
/* if I2C_NOSTART is not set, START condition and ADDR is used */
if (!(flags & I2C_NOSTART)) {
/* send START condition */
_i2c_start_cmd (dev);
/* address handling */
if (flags & I2C_ADDR10) {
/* prepare 10 bit address bytes */
uint8_t addr10[2];
addr10[0] = 0xf0 | (addr & 0x0300) >> 7;
addr10[1] = addr & 0xff;
/* send ADDR without read flag */
_i2c_write_cmd (dev, addr10, 2);
}
else {
/* send ADDR without read flag */
uint8_t addr7 = addr << 1;
_i2c_write_cmd (dev, &addr7, 1);
}
}
/* send data bytes in blocks of I2C_MAX_DATA bytes */
uint32_t off = 0;
/* if len > I2C_MAX_DATA write blocks I2C_MAX_DATA bytes at a time */
while (len > I2C_MAX_DATA) {
/* send on block of data bytes */
_i2c_write_cmd (dev, ((uint8_t*)data) + off, I2C_MAX_DATA);
_i2c_end_cmd (dev);
_i2c_transfer (dev);
_i2c_return_on_error_write (dev);
2018-10-08 12:20:49 +02:00
len -= I2C_MAX_DATA;
off += I2C_MAX_DATA;
}
/* write remaining data bytes command */
_i2c_write_cmd (dev, ((uint8_t*)data), len);
/* if I2C_NOSTOP flag is not set, send STOP condition is used */
if (!(flags & I2C_NOSTOP)) {
/* send STOP condition */
_i2c_stop_cmd (dev);
}
else {
/* otherwise place end command in pipeline */
_i2c_end_cmd (dev);
}
/* finish operation by executing the command pipeline */
_i2c_transfer (dev);
_i2c_return_on_error_write (dev);
2018-10-08 12:20:49 +02:00
/* return 0 on success */
return 0;
}
/* internal functions */
static int _i2c_init_pins(i2c_t dev)
{
/*
* reset GPIO usage type if the pins were used already for I2C before to
* make it possible to reinitialize I2C
*/
if (gpio_get_pin_usage(i2c_config[dev].scl) == _I2C) {
gpio_set_pin_usage(i2c_config[dev].scl, _GPIO);
2018-10-08 12:20:49 +02:00
}
if (gpio_get_pin_usage(i2c_config[dev].sda) == _I2C) {
gpio_set_pin_usage(i2c_config[dev].sda, _GPIO);
2018-10-08 12:20:49 +02:00
}
/* try to configure SDA and SCL pin as GPIO in open-drain mode with enabled pull-ups */
if (gpio_init (i2c_config[dev].scl, GPIO_IN_OD_PU) ||
gpio_init (i2c_config[dev].sda, GPIO_IN_OD_PU)) {
2018-10-08 12:20:49 +02:00
return -ENODEV;
}
/* bring signals to high */
gpio_set(i2c_config[dev].scl);
gpio_set(i2c_config[dev].sda);
2018-10-08 12:20:49 +02:00
/* store the usage type in GPIO table */
gpio_set_pin_usage(i2c_config[dev].scl, _I2C);
gpio_set_pin_usage(i2c_config[dev].sda, _I2C);
2018-10-08 12:20:49 +02:00
/* connect SCL and SDA pins to output signals through the GPIO matrix */
GPIO.func_out_sel_cfg[i2c_config[dev].scl].func_sel = _i2c_hw[dev].signal_scl_out;
GPIO.func_out_sel_cfg[i2c_config[dev].sda].func_sel = _i2c_hw[dev].signal_sda_out;
2018-10-08 12:20:49 +02:00
/* connect SCL and SDA input signals to pins through the GPIO matrix */
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_scl_in].sig_in_sel = 1;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_scl_in].sig_in_inv = 0;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_scl_in].func_sel = i2c_config[dev].scl;
2018-10-08 12:20:49 +02:00
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_sda_in].sig_in_sel = 1;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_sda_in].sig_in_inv = 0;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_sda_in].func_sel = i2c_config[dev].sda;
2018-10-08 12:20:49 +02:00
return 0;
}
static void _i2c_start_cmd(i2c_t dev)
{
DEBUG ("%s\n", __func__);
/* place START condition command in command queue */
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].op_code = I2C_CMD_RSTART;
/* increment the command counter */
_i2c_bus[dev].cmd++;
}
static void _i2c_stop_cmd (i2c_t dev)
{
DEBUG ("%s\n", __func__);
/* place STOP condition command in command queue */
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].op_code = I2C_CMD_STOP;
/* increment the command counter */
_i2c_bus[dev].cmd++;
}
static void _i2c_end_cmd (i2c_t dev)
{
DEBUG ("%s\n", __func__);
/* place END command for continues data transmission in command queue */
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].op_code = I2C_CMD_END;
/* increment the command counter */
_i2c_bus[dev].cmd++;
}
static void _i2c_write_cmd (i2c_t dev, const uint8_t* data, uint8_t len)
{
DEBUG ("%s dev=%u data=%p len=%d\n", __func__, dev, data, len);
if (_i2c_bus[dev].data + len > I2C_MAX_DATA) {
LOG_TAG_ERROR("i2c", "Maximum number of bytes (32 bytes) that can be "
"sent with on transfer reached\n");
return;
}
/* store the byte in RAM of I2C controller and increment the data counter */
for (int i = 0; i < len; i++) {
#if I2C_FIFO_USED
WRITE_PERI_REG(I2C_DATA_APB_REG(dev), data[i]);
#else
_i2c_hw[dev].regs->ram_data[_i2c_bus[dev].data++] = (uint32_t)data[i];
#endif
}
/* place WRITE command for multiple bytes in command queue */
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].byte_num = len;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_en = 1;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_exp = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].op_code = I2C_CMD_WRITE;
/* increment the command counter */
_i2c_bus[dev].cmd++;
}
static void _i2c_read_cmd (i2c_t dev, uint8_t* data, uint8_t len, bool last)
{
DEBUG ("%s dev=%u data=%p len=%d\n", __func__, dev, data, len);
if (len < 1 || len > I2C_MAX_DATA) {
/* at least one byte has to be read */
LOG_TAG_ERROR("i2c", "At least one byte has to be read\n");
return;
}
if (len > 1)
{
/* place READ command for len-1 bytes with positive ack in command queue*/
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].byte_num = len-1;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_en = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_exp = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].op_code = I2C_CMD_READ;
/* increment the command counter */
_i2c_bus[dev].cmd++;
}
/* place READ command for last byte with negative ack in last segment in command queue*/
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].val = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].byte_num = 1;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_en = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_exp = 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].ack_val = last ? 1 : 0;
_i2c_hw[dev].regs->command[_i2c_bus[dev].cmd].op_code = I2C_CMD_READ;
/* increment the command counter */
_i2c_bus[dev].cmd++;
}
static inline void _i2c_delay (uint32_t cycles)
{
/* produces a delay of 0,0625 us per cycle for -O2 compile option */
/* 1 us = ca. 16 cycles (80 MHz) / 1 us = 32 cycles (160 MHz) */
if (cycles) {
__asm__ volatile ("1: _addi.n %0, %0, -1 \n"
" bnez %0, 1b \n" : "=r" (cycles) : "0" (cycles));
}
}
/* transfer related interrupts handled by the driver */
static const uint32_t transfer_int_mask = I2C_TRANS_COMPLETE_INT_ENA
| I2C_END_DETECT_INT_ENA
| I2C_ACK_ERR_INT_ENA
| I2C_ARBITRATION_LOST_INT_ENA
| I2C_TIME_OUT_INT_ENA;
/* at I2C_SPEED_NORMAL a transfer takes at most 33 byte * 9 clock cycles * 1/100000 s */
#define I2C_TRANSFER_TIMEOUT 3000
#define I2C_THREAD_FLAG BIT (0)
#include "xtimer.h"
void _i2c_transfer_timeout (void *arg)
{
i2c_t dev = (i2c_t)arg;
2019-10-23 21:13:52 +02:00
/* reset the hardware if it I2C got stuck */
2018-10-08 12:20:49 +02:00
_i2c_reset_hw(dev);
/* set result to timeout */
_i2c_bus[dev].results |= I2C_TIME_OUT_INT_ST;
/* wake up the thread that is waiting for the results */
thread_flags_set((thread_t*)thread_get(_i2c_bus[dev].pid), I2C_THREAD_FLAG);
}
/* Transfer of commands in I2C controller command pipeline */
static void _i2c_transfer (i2c_t dev)
{
DEBUG("%s cmd=%d\n", __func__, _i2c_bus[dev].cmd);
#if FIFO_USED
/* reset RX FIFO queue */
_i2c_hw[dev].regs->fifo_conf.rx_fifo_rst = 1;
_i2c_hw[dev].regs->fifo_conf.rx_fifo_rst = 0;
#endif
/* disable and enable all transmission interrupts and clear current status */
_i2c_hw[dev].regs->int_ena.val &= ~transfer_int_mask;
_i2c_hw[dev].regs->int_ena.val |= transfer_int_mask;
_i2c_hw[dev].regs->int_clr.val = transfer_int_mask;
/* set a timer for the case the I2C hardware gets stuck */
xtimer_t i2c_timeout = {};
i2c_timeout.callback = _i2c_transfer_timeout;
i2c_timeout.arg = (void*)dev;
xtimer_set(&i2c_timeout, I2C_TRANSFER_TIMEOUT);
/* start execution of commands in command pipeline registers */
_i2c_bus[dev].pid = thread_getpid();
_i2c_bus[dev].results = 0;
_i2c_hw[dev].regs->ctr.trans_start = 0;
_i2c_hw[dev].regs->ctr.trans_start = 1;
/* wait for transfer results and remove timeout timer*/
thread_flags_wait_one(I2C_THREAD_FLAG);
xtimer_remove(&i2c_timeout);
/* returned from transmission */
DEBUG("%s results=%08x\n", __func__, _i2c_bus[dev].results);
#if FIFO_USED
/* reset TX FIFO queue */
_i2c_hw[dev].regs->fifo_conf.tx_fifo_rst = 1;
_i2c_hw[dev].regs->fifo_conf.tx_fifo_rst = 0;
#endif
/* reset command and data index */
_i2c_bus[dev].cmd = 0;
_i2c_bus[dev].data = 0;
}
static void IRAM_ATTR _i2c_intr_handler (void *arg)
{
/* to satisfy the compiler */
(void)arg;
irq_isr_enter ();
/* all I2C peripheral interrupt sources are routed to the same interrupt,
so we have to use the status register to distinguish interruptees */
for (unsigned dev = 0; dev < I2C_NUMOF; dev++) {
2018-10-08 12:20:49 +02:00
/* test for transfer related interrupts */
if (_i2c_hw[dev].regs->int_status.val & transfer_int_mask) {
/* set transfer result */
_i2c_bus[dev].results |= _i2c_hw[dev].regs->int_status.val;
/* disable all interrupts and clear them and left them disabled */
_i2c_hw[dev].regs->int_ena.val &= ~transfer_int_mask;
_i2c_hw[dev].regs->int_clr.val = transfer_int_mask;
/* wake up the thread that is waiting for the results */
thread_flags_set((thread_t*)thread_get(_i2c_bus[dev].pid), I2C_THREAD_FLAG);
}
else if (_i2c_hw[dev].regs->int_status.val) {
/* if there are any other interrupts, clear them */
_i2c_hw[dev].regs->int_clr.val = ~0x0U;
}
}
irq_isr_exit ();
}
#if 1 /* TODO */
/* Some slave devices will die by accident and keep the SDA in low level,
* in this case, master should send several clock to make the slave release
* the bus.
*/
static void _i2c_clear_bus(i2c_t dev)
{
/* reset the usage type in GPIO table */
gpio_set_pin_usage(i2c_config[dev].scl, _GPIO);
gpio_set_pin_usage(i2c_config[dev].sda, _GPIO);
2018-10-08 12:20:49 +02:00
/* configure SDA and SCL pin as GPIO in open-drain mode temporarily */
gpio_init (i2c_config[dev].scl, GPIO_IN_OD_PU);
gpio_init (i2c_config[dev].sda, GPIO_IN_OD_PU);
2018-10-08 12:20:49 +02:00
/* master send some clock pulses to make the slave release the bus */
gpio_set (i2c_config[dev].scl);
gpio_set (i2c_config[dev].sda);
gpio_clear (i2c_config[dev].sda);
2018-10-08 12:20:49 +02:00
for (int i = 0; i < 20; i++) {
gpio_toggle(i2c_config[dev].scl);
2018-10-08 12:20:49 +02:00
}
gpio_set(i2c_config[dev].sda);
2018-10-08 12:20:49 +02:00
/* store the usage type in GPIO table */
gpio_set_pin_usage(i2c_config[dev].scl, _I2C);
gpio_set_pin_usage(i2c_config[dev].sda, _I2C);
2018-10-08 12:20:49 +02:00
/* connect SCL and SDA pins to output signals through the GPIO matrix */
GPIO.func_out_sel_cfg[i2c_config[dev].scl].func_sel = _i2c_hw[dev].signal_scl_out;
GPIO.func_out_sel_cfg[i2c_config[dev].sda].func_sel = _i2c_hw[dev].signal_sda_out;
2018-10-08 12:20:49 +02:00
/* connect SCL and SDA input signals to pins through the GPIO matrix */
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_scl_in].sig_in_sel = 1;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_scl_in].sig_in_inv = 0;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_scl_in].func_sel = i2c_config[dev].scl;
2018-10-08 12:20:49 +02:00
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_sda_in].sig_in_sel = 1;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_sda_in].sig_in_inv = 0;
GPIO.func_in_sel_cfg[_i2c_hw[dev].signal_sda_in].func_sel = i2c_config[dev].sda;
2018-10-08 12:20:49 +02:00
return;
}
#endif
/*
* PLEASE NOTE: Following function is from the ESP-IDF and is licensed
* under the Apache License, Version 2.0 (the "License").
* http://www.apache.org/licenses/LICENSE-2.0
*
* Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
*/
static void _i2c_reset_hw (i2c_t dev)
{
/* save current configuration */
uint32_t ctr = _i2c_hw[dev].regs->ctr.val;
uint32_t fifo_conf = _i2c_hw[dev].regs->fifo_conf.val;
uint32_t scl_low_period = _i2c_hw[dev].regs->scl_low_period.val;
uint32_t scl_high_period = _i2c_hw[dev].regs->scl_high_period.val;
uint32_t scl_start_hold = _i2c_hw[dev].regs->scl_start_hold.val;
uint32_t scl_rstart_setup = _i2c_hw[dev].regs->scl_rstart_setup.val;
uint32_t scl_stop_hold = _i2c_hw[dev].regs->scl_stop_hold.val;
uint32_t scl_stop_setup = _i2c_hw[dev].regs->scl_stop_setup.val;
uint32_t sda_hold = _i2c_hw[dev].regs->sda_hold.val;
uint32_t sda_sample = _i2c_hw[dev].regs->sda_sample.val;
uint32_t timeout = _i2c_hw[dev].regs->timeout.val;
uint32_t scl_filter_cfg = _i2c_hw[dev].regs->scl_filter_cfg.val;
uint32_t sda_filter_cfg = _i2c_hw[dev].regs->sda_filter_cfg.val;
/* reset hardware mpdule */
periph_module_disable(_i2c_hw[dev].mod);
_i2c_clear_bus(dev);
periph_module_enable(_i2c_hw[dev].mod);
/* restore configuration */
_i2c_hw[dev].regs->int_ena.val = 0;
_i2c_hw[dev].regs->ctr.val = ctr & (~I2C_TRANS_START_M);
_i2c_hw[dev].regs->fifo_conf.val = fifo_conf;
_i2c_hw[dev].regs->scl_low_period.val = scl_low_period;
_i2c_hw[dev].regs->scl_high_period.val = scl_high_period;
_i2c_hw[dev].regs->scl_start_hold.val = scl_start_hold;
_i2c_hw[dev].regs->scl_rstart_setup.val = scl_rstart_setup;
_i2c_hw[dev].regs->scl_stop_hold.val = scl_stop_hold;
_i2c_hw[dev].regs->scl_stop_setup.val = scl_stop_setup;
_i2c_hw[dev].regs->sda_hold.val = sda_hold;
_i2c_hw[dev].regs->sda_sample.val = sda_sample;
_i2c_hw[dev].regs->timeout.val = timeout;
_i2c_hw[dev].regs->scl_filter_cfg.val = scl_filter_cfg;
_i2c_hw[dev].regs->sda_filter_cfg.val = sda_filter_cfg;
/* disable and clear all interrupt sources */
_i2c_hw[dev].regs->int_ena.val = 0;
_i2c_hw[dev].regs->int_clr.val = ~0x0U;
return;
}
void i2c_print_config(void)
{
for (unsigned dev = 0; dev < I2C_NUMOF; dev++) {
printf("\tI2C_DEV(%u)\tscl=%d sda=%d\n",
dev, i2c_config[dev].scl, i2c_config[dev].sda);
2018-10-08 12:20:49 +02:00
}
}
#else /* defined(I2C0_SPEED) || defined(I2C1_SPEED) */
void i2c_print_config(void)
{
LOG_TAG_INFO("i2c", "no I2C devices\n");
}
#endif /* defined(I2C0_SPEED) || defined(I2C1_SPEED) */
#endif /* MODULE_ESP_I2C_HW */