1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/fe310/cpu.c

125 lines
4.0 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017, 2019 Ken Rabold, JP Bonn
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_fe310
* @{
*
* @file cpu.c
* @brief Implementation of the CPU initialization for SiFive FE310
*
* @author Ken Rabold
* @}
*/
#include "cpu.h"
#include "periph/init.h"
#include "periph_conf.h"
#include "vendor/encoding.h"
#include "vendor/plic_driver.h"
#include "stdio_uart.h"
/*
* Configure the memory mapped flash for faster throughput
* to minimize interrupt latency on an I-Cache miss and refill
* from flash. Alternatively (and faster) the interrupt
* routine could be put in SRAM. The linker script supports
* code in SRAM using the ".hotcode" section.
* The flash chip on the HiFive1 is the ISSI 25LP128
* http://www.issi.com/WW/pdf/IS25LP128.pdf
* The maximum frequency it can run at is 133MHz in
* "Fast Read Dual I/O" mode.
* Note the updated data sheet:
* https://static.dev.sifive.com/SiFive-FE310-G000-datasheet-v1.0.4.pdf
* states "Address and write data using DQ[3] for transmission will not
* function properly." This rules out QPI for the XIP memory mapped flash.
* #define MAX_FLASH_FREQ 133000000
* On forum SiFive says "safe" operation would be 40MHz. 50MHz seems to work
* fine.
*/
#define MAX_FLASH_FREQ 50000000
/* This should work for any reasonable cpu clock value. */
#define SCKDIV_SAFE 3
/*
* By default the SPI FFMT initialized as:
* cmd_en = 1
* addr_len = 3
* cmd_code = 3
* all other fields = 0
*/
void flash_init(void)
{
/* In case we are executing from QSPI, (which is quite likely) we need to
* set the QSPI clock divider appropriately before boosting the clock
* frequency.
*/
SPI0_REG(SPI_REG_SCKDIV) = SCKDIV_SAFE;
/* begin{code-style-ignore} */
SPI0_REG(SPI_REG_FFMT) = /* setup "Fast Read Dual I/O" 1-1-2 */
SPI_INSN_CMD_EN | /* Enable memory-mapped flash */
SPI_INSN_ADDR_LEN(3) | /* 25LP128 read commands have 3 address bytes */
SPI_INSN_PAD_CNT(4) | /* 25LP128 Table 6.9 Read Dummy Cycles P4,P3=0,0 */
SPI_INSN_CMD_PROTO(SPI_PROTO_S) | /* 25LP128 Table 8.1 "Instruction */
SPI_INSN_ADDR_PROTO(SPI_PROTO_D) | /* Set" shows mode for cmd, addr, and */
SPI_INSN_DATA_PROTO(SPI_PROTO_D) | /* data protocol for given instruction */
SPI_INSN_CMD_CODE(0xbb) | /* Set the instruction to "Fast Read Dual I/O" */
SPI_INSN_PAD_CODE(0x00); /* Dummy cycle sends 0 value bits */
/* end{code-style-ignore} */
/*
* The relationship between the input clock and SCK is given
* by the following formula (Fin is processor/tile-link clock):
* Fsck = Fin/(2(div + 1))
*/
uint32_t freq = cpu_freq();
uint32_t sckdiv = (freq - 1) / (MAX_FLASH_FREQ * 2);
if (sckdiv > SCKDIV_SAFE) {
SPI0_REG(SPI_REG_SCKDIV) = sckdiv;
}
}
/**
* @brief Initialize the CPU, set IRQ priorities, clocks, peripheral
*/
void cpu_init(void)
{
/* Initialize clock */
clock_init();
#if USE_CLOCK_HFROSC_PLL
/* Initialize flash memory, only when using the PLL: in this
case the CPU core clock can be configured to be so fast that the SPI
flash frequency needs to be adjusted accordingly. */
flash_init();
#endif
/* Enable FPU if present */
if (read_csr(misa) & (1 << ('F' - 'A'))) {
write_csr(mstatus, MSTATUS_FS); /* allow FPU instructions without trapping */
write_csr(fcsr, 0); /* initialize rounding mode, undefined at reset */
}
/* Initialize IRQs */
irq_init();
/* Initialize stdio */
stdio_init();
#ifndef _PICOLIBC__
/* Initialize newlib-nano library stubs */
nanostubs_init();
#endif /* PICOLIBC */
/* Initialize static peripheral */
periph_init();
}