1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 09:52:45 +01:00
RIOT/cpu/efm32/periph/timer_series2.c

362 lines
8.2 KiB
C
Raw Normal View History

/*
* Copyright (C) 2022 SSV Software Systems GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_efm32
* @ingroup drivers_periph_timer
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* @author Juergen Fitschen <me@jue.yt>
* @}
*/
#include "cpu.h"
#include "log.h"
#include "assert.h"
#include "periph/timer.h"
#include "periph_conf.h"
#include "pm_layered.h"
#include "em_cmu.h"
#include "em_timer.h"
#include "em_timer_utils.h"
#include "em_letimer.h"
/**
* @brief These power modes will be blocked while the timer is running
*/
#ifndef TIMER_PM_BLOCKER
#define TIMER_PM_BLOCKER EFM32_PM_MODE_EM2
#endif
#ifndef LETIMER_PM_BLOCKER
#define LETIMER_PM_BLOCKER EFM32_PM_MODE_EM3
#endif
/**
* @brief Timer state memory
*/
static timer_isr_ctx_t isr_ctx[TIMER_NUMOF];
/**
* @brief Check whether dev is using a LETIMER device
*/
static inline bool _is_letimer(tim_t dev)
{
#if defined(LETIMER_COUNT) && (LETIMER_COUNT > 0)
return ((uint32_t) timer_config[dev].dev) == LETIMER0_BASE;
#else
(void) dev;
return false;
#endif
}
#define LETIMER_CH_VALID(x) (x < 2)
static inline void _letimer_init(tim_t dev, uint32_t freq)
{
(void) freq;
assert(freq == CMU_ClockFreqGet(timer_config[dev].cmu));
LETIMER_TypeDef *tim = timer_config[dev].dev;
/* disable and clear interrupts */
LETIMER_IntDisable(tim, LETIMER_IEN_COMP0 | LETIMER_IEN_COMP1);
LETIMER_IntClear(tim, LETIMER_IF_COMP0 | LETIMER_IF_COMP1);
/* initialize timer without starting it yet */
LETIMER_Init_TypeDef init = LETIMER_INIT_DEFAULT;
init.enable = false;
init.topValue = LETIMER_MAX_VALUE;
LETIMER_Init(tim, &init);
}
static inline void _timer_init(tim_t dev, uint32_t freq)
{
/* bring peripheral into known state */
TIMER_Reset(timer_config[dev].dev);
/* get input clock of the timer */
uint32_t clk_freq = CMU_ClockFreqGet(timer_config[dev].cmu);
/* initialize timer */
TIMER_Init_TypeDef init = TIMER_INIT_DEFAULT;
init.enable = false;
init.prescale = (clk_freq / freq) - 1;
/* check if any rounding errors occurred */
assert(clk_freq / (init.prescale + 1) == freq);
TIMER_Init(timer_config[dev].dev, &init);
/* set top variable */
TIMER_TopSet(timer_config[dev].dev, TIMER_MAX_VALUE);
/* initialize CC channels */
TIMER_InitCC_TypeDef init_cc = TIMER_INITCC_DEFAULT;
init_cc.mode = timerCCModeCompare;
for (size_t i = 0; TIMER_CH_VALID(i); i++) {
TIMER_InitCC(timer_config[dev].dev, i, &init_cc);
}
}
int timer_init(tim_t dev, uint32_t freq, timer_cb_t callback, void *arg)
{
assert(dev < TIMER_NUMOF);
/* enable clocks */
CMU_ClockEnable(timer_config[dev].cmu, true);
/* init underlying hardware */
_is_letimer(dev) ? _letimer_init(dev, freq) : _timer_init(dev, freq);
/* save callback */
isr_ctx[dev].cb = callback;
isr_ctx[dev].arg = arg;
/* setup Cortex-M IRQ line */
NVIC_ClearPendingIRQ(timer_config[dev].irq);
NVIC_EnableIRQ(timer_config[dev].irq);
timer_start(dev);
return 0;
}
static inline int _letimer_set_absolute(tim_t dev, int channel, unsigned int value)
{
if (!LETIMER_CH_VALID(channel)) {
return -1;
}
LETIMER_TypeDef *tim = timer_config[dev].dev;
/* LETIMER is countdown only, so we invert the value */
value = LETIMER_MAX_VALUE - value;
LETIMER_CompareSet(tim, channel, value);
uint32_t irq_bit = (LETIMER_IF_COMP0 << channel);
LETIMER_IntClear(tim, irq_bit);
LETIMER_IntEnable(tim, irq_bit);
return 0;
}
static inline int _timer_set_absolute(tim_t dev, int channel, unsigned int value)
{
if (!TIMER_CH_VALID(channel)) {
return -1;
}
TIMER_TypeDef *tim = timer_config[dev].dev;
uint32_t irq_bit = (TIMER_IF_CC0 << channel);
/* make sure to clear previously set irqs */
TIMER_IntClear(tim, irq_bit);
/* set compare value */
TIMER_CompareSet(tim, channel, value);
/* turn on IRQs */
TIMER_IntEnable(tim, irq_bit);
return 0;
}
int timer_set_absolute(tim_t dev, int channel, unsigned int value)
{
return _is_letimer(dev) ? _letimer_set_absolute(dev, channel, value) : _timer_set_absolute(dev, channel, value);
}
static inline int _letimer_clear(tim_t dev, int channel)
{
if (!LETIMER_CH_VALID(channel)) {
return -1;
}
LETIMER_TypeDef *tim = timer_config[dev].dev;
uint32_t irq_bit = (LETIMER_IF_COMP0 << channel);
LETIMER_IntDisable(tim, irq_bit);
LETIMER_IntClear(tim, irq_bit);
return 0;
}
static inline int _timer_clear(tim_t dev, int channel)
{
if (!TIMER_CH_VALID(channel)) {
return -1;
}
/* turn off output compare IRQ */
TIMER_IntDisable(timer_config[dev].dev, (TIMER_IF_CC0 << channel));
return 0;
}
int timer_clear(tim_t dev, int channel)
{
return _is_letimer(dev) ? _letimer_clear(dev, channel) : _timer_clear(dev, channel);
}
static inline unsigned int _letimer_read(tim_t dev)
{
LETIMER_TypeDef *tim = timer_config[dev].dev;
/* LETIMER is countdown only, so we invert the value */
return (unsigned int) LETIMER_MAX_VALUE - LETIMER_CounterGet(tim);
}
static inline unsigned int _timer_read(tim_t dev)
{
TIMER_TypeDef *tim = timer_config[dev].dev;
return (unsigned int) TIMER_CounterGet(tim);
}
unsigned int timer_read(tim_t dev)
{
return _is_letimer(dev) ? _letimer_read(dev) : _timer_read(dev);
}
static inline bool _letimer_is_running(LETIMER_TypeDef *tim)
{
/* make sure registers are up-to-date and
* we can rely on the STATS register */
LETIMER_SyncWait(tim);
return tim->STATUS & LETIMER_STATUS_RUNNING;
}
static inline bool _timer_is_running(TIMER_TypeDef *tim)
{
/* make sure registers are up-to-date and
* we can rely on the STATS register */
TIMER_SyncWait(tim);
return tim->STATUS & TIMER_STATUS_RUNNING;
}
static inline void _letimer_stop(tim_t dev)
{
LETIMER_TypeDef *tim = timer_config[dev].dev;
if (_letimer_is_running(tim)) {
pm_unblock(LETIMER_PM_BLOCKER);
}
LETIMER_Enable(tim, false);
}
static inline void _timer_stop(tim_t dev)
{
TIMER_TypeDef *tim = timer_config[dev].dev;
if (_timer_is_running(tim)) {
pm_unblock(TIMER_PM_BLOCKER);
}
TIMER_Enable(tim, false);
}
void timer_stop(tim_t dev)
{
_is_letimer(dev) ? _letimer_stop(dev) : _timer_stop(dev);
}
static inline void _letimer_start(tim_t dev)
{
LETIMER_TypeDef *tim = timer_config[dev].dev;
if (!_letimer_is_running(tim)) {
pm_block(LETIMER_PM_BLOCKER);
}
LETIMER_Enable(tim, true);
}
static inline void _timer_start(tim_t dev)
{
TIMER_TypeDef *tim = timer_config[dev].dev;
if (!_timer_is_running(tim)) {
pm_block(TIMER_PM_BLOCKER);
}
TIMER_Enable(tim, true);
}
void timer_start(tim_t dev)
{
_is_letimer(dev) ? _letimer_start(dev) : _timer_start(dev);
}
static inline void _letimer_isr(tim_t dev)
{
LETIMER_TypeDef *tim = timer_config[dev].dev;
for (int i = 0; TIMER_CH_VALID(i); i++) {
if (tim->IF & (LETIMER_IF_COMP0 << i))
{
LETIMER_IntDisable(tim, LETIMER_IEN_COMP0 << i);
LETIMER_IntClear(tim, LETIMER_IF_COMP0 << i);
isr_ctx[dev].cb(isr_ctx[dev].arg, i);
}
}
}
static inline void _timer_isr(tim_t dev)
{
TIMER_TypeDef *tim = timer_config[dev].dev;
for (size_t i = 0; TIMER_CH_VALID(i); i++) {
uint32_t irq_bit = (TIMER_IF_CC0 << i);
if (TIMER_IntGetEnabled(tim) & irq_bit) {
TIMER_IntDisable(tim, irq_bit);
TIMER_IntClear(tim, irq_bit);
isr_ctx[dev].cb(isr_ctx[dev].arg, i);
}
}
}
static void _isr(tim_t dev)
{
_is_letimer(dev) ? _letimer_isr(dev) : _timer_isr(dev);
cortexm_isr_end();
}
#ifdef TIMER_0_ISR
void TIMER_0_ISR(void)
{
_isr(0);
}
#endif /* TIMER_0_ISR */
#ifdef TIMER_1_ISR
void TIMER_1_ISR(void)
{
_isr(1);
}
#endif /* TIMER_1_ISR */
#ifdef TIMER_2_ISR
void TIMER_2_ISR(void)
{
_isr(2);
}
#endif /* TIMER_2_ISR */
#ifdef TIMER_3_ISR
void TIMER_3_ISR(void)
{
_isr(3);
}
#endif /* TIMER_3_ISR */