1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/kinetis/periph/pwm.c

153 lines
4.1 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014-2016 Freie Universität Berlin
* Copyright (C) 2014 PHYTEC Messtechnik GmbH
* Copyright (C) 2015-2016 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_kinetis
* @ingroup drivers_periph_pwm
*
* @{
*
* @file
* @brief Low-level PWM driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Johann Fischer <j.fischer@phytec.de>
* @author Jonas Remmert <j.remmert@phytec.de>
2015-09-20 13:47:39 +02:00
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include "cpu.h"
#include "assert.h"
#include "periph/pwm.h"
#define PRESCALER_MAX (7U)
static inline FTM_Type *ftm(pwm_t pwm)
{
return pwm_config[pwm].ftm;
}
static void poweron(pwm_t pwm)
{
int ftm = pwm_config[pwm].ftm_num;
#ifdef SIM_SCGC6_FTM2_SHIFT
BITBAND_REG32(SIM->SCGC6, SIM_SCGC6_FTM0_SHIFT + ftm) = 1;
#else
if (ftm < 2) {
BITBAND_REG32(SIM->SCGC6, SIM_SCGC6_FTM0_SHIFT + ftm) = 1;
}
else if (ftm == 2) {
BITBAND_REG32(SIM->SCGC3, SIM_SCGC3_FTM2_SHIFT) = 1;
}
#endif
}
uint32_t pwm_init(pwm_t pwm, pwm_mode_t mode, uint32_t freq, uint16_t res)
{
uint8_t pre = 0;
if (pwm >= PWM_NUMOF || ((res * freq) > CLOCK_BUSCLOCK)) {
return 0;
}
/* figure out the clock settings
* the resulting frequency is calculated by
* ticks := BUS_CLK / 2 ^ pre
* where `ticks` is `freq * res`
* and `pre` must be between [0, 7].
*
* The resulting prescaler yields a timer frequency, which is the closest
* possible frequency requested. */
while ((CLOCK_BUSCLOCK >> pre) > (res * freq)) {
++pre;
}
/* make sure the calculated prescaler is valid, else return */
if (pre > PRESCALER_MAX) {
return 0;
}
/* configure the used timer */
poweron(pwm);
/* disable write protect for changing settings */
ftm(pwm)->MODE = FTM_MODE_WPDIS_MASK;
/* clear any existing configuration */
ftm(pwm)->COMBINE = 0;
ftm(pwm)->CNTIN = 0;
ftm(pwm)->SWOCTRL = 0;
/* apply prescaler and set resolution */
ftm(pwm)->SC = FTM_SC_PS(pre);
ftm(pwm)->MOD = (res - 1);
/* set CPWMS bit in the SC register in case of center aligned mode */
if (mode == PWM_CENTER) {
BITBAND_REG32(ftm(pwm)->SC, FTM_SC_CPWMS_SHIFT) = 1;
}
/* setup the configured channels */
for (int i = 0; i < (int)pwm_config[pwm].chan_numof; i++) {
/* configure the used pin */
gpio_init_port(pwm_config[pwm].chan[i].pin,
PORT_PCR_MUX(pwm_config[pwm].chan[i].af));
/* set the given mode */
ftm(pwm)->CONTROLS[pwm_config[pwm].chan[i].ftm_chan].CnSC = mode;
/* and reset the PWM to 0% duty cycle */
ftm(pwm)->CONTROLS[pwm_config[pwm].chan[i].ftm_chan].CnV = 0;
}
/* and now we start the actual waveform generation */
ftm(pwm)->SC |= FTM_SC_CLKS(1);
/* finally we need to return the actual applied PWM frequency */
return (CLOCK_BUSCLOCK >> pre) / res;
}
uint8_t pwm_channels(pwm_t pwm)
{
assert(pwm < PWM_NUMOF);
return pwm_config[pwm].chan_numof;
}
void pwm_set(pwm_t pwm, uint8_t channel, uint16_t value)
{
assert((pwm < PWM_NUMOF) && (channel < pwm_config[pwm].chan_numof));
ftm(pwm)->CONTROLS[pwm_config[pwm].chan[channel].ftm_chan].CnV = value;
}
void pwm_poweron(pwm_t pwm)
{
assert(pwm < PWM_NUMOF);
poweron(pwm);
ftm(pwm)->SC |= FTM_SC_CLKS(1);
}
void pwm_poweroff(pwm_t pwm)
{
assert(pwm < PWM_NUMOF);
int ftm_num = pwm_config[pwm].ftm_num;
/* disable PWM generation */
ftm(pwm)->SC &= ~(FTM_SC_CLKS_MASK);
/* and power of the peripheral */
#ifdef SIM_SCGC6_FTM2_SHIFT
BITBAND_REG32(SIM->SCGC6, SIM_SCGC6_FTM0_SHIFT + ftm_num) = 0;
#else
if (ftm_num < 2) {
BITBAND_REG32(SIM->SCGC6, SIM_SCGC6_FTM0_SHIFT + ftm_num) = 0;
}
else if (ftm_num == 2) {
BITBAND_REG32(SIM->SCGC3, SIM_SCGC3_FTM2_SHIFT) = 0;
}
#endif
}