1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32/periph/spi.c

419 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 Hamburg University of Applied Sciences
* 2014-2017 Freie Universität Berlin
* 2016-2017 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
2020-05-03 17:17:54 +02:00
* @ingroup cpu_stm32
* @ingroup drivers_periph_spi
* @{
*
* @file
* @brief Low-level SPI driver implementation
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Fabian Nack <nack@inf.fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
*
* @}
*/
#include "bitarithm.h"
#include "cpu.h"
#include "mutex.h"
#include "assert.h"
#include "periph/spi.h"
#include "pm_layered.h"
2020-10-22 11:34:00 +02:00
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief Number of bits to shift the BR value in the CR1 register
*/
#define BR_SHIFT (3U)
#define BR_MAX (7U)
#ifdef SPI_CR2_FRXTH
/* configure SPI for 8-bit data width */
#define SPI_CR2_SETTINGS (SPI_CR2_FRXTH |\
SPI_CR2_DS_0 |\
SPI_CR2_DS_1 |\
SPI_CR2_DS_2)
#else
#define SPI_CR2_SETTINGS 0
#endif
/**
* @brief Allocate one lock per SPI device
*/
static mutex_t locks[SPI_NUMOF];
/**
* @brief Clock configuration cache
*/
static uint32_t clocks[SPI_NUMOF];
/**
* @brief Clock divider cache
*/
static uint8_t dividers[SPI_NUMOF];
static inline SPI_TypeDef *dev(spi_t bus)
{
return spi_config[bus].dev;
}
#ifdef MODULE_PERIPH_DMA
static inline bool _use_dma(const spi_conf_t *conf)
{
return conf->tx_dma != DMA_STREAM_UNDEF && conf->rx_dma != DMA_STREAM_UNDEF;
}
#endif
/**
* @brief Multiplier for clock divider calculations
*
* Makes the divider calculation fixed point
*/
#define SPI_APB_CLOCK_SHIFT (4U)
#define SPI_APB_CLOCK_MULT (1U << SPI_APB_CLOCK_SHIFT)
static uint8_t _get_clkdiv(const spi_conf_t *conf, uint32_t clock)
{
uint32_t bus_clock = periph_apb_clk(conf->apbbus);
/* Shift bus_clock with SPI_APB_CLOCK_SHIFT to create a fixed point int */
uint32_t div = (bus_clock << SPI_APB_CLOCK_SHIFT) / (2 * clock);
DEBUG("[spi] clock: divider: %"PRIu32"\n", div);
/* Test if the divider is 2 or smaller, keeping the fixed point in mind */
if (div <= SPI_APB_CLOCK_MULT) {
return 0;
}
/* determine MSB and compensate back for the fixed point int shift */
uint8_t rounded_div = bitarithm_msb(div) - SPI_APB_CLOCK_SHIFT;
/* Determine if rounded_div is not a power of 2 */
if ((div & (div - 1)) != 0) {
/* increment by 1 to ensure that the clock speed at most the
* requested clock speed */
rounded_div++;
}
return rounded_div > BR_MAX ? BR_MAX : rounded_div;
}
void spi_init(spi_t bus)
{
assert(bus < SPI_NUMOF);
/* initialize device lock */
mutex_init(&locks[bus]);
/* trigger pin initialization */
spi_init_pins(bus);
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask);
/* reset configuration */
dev(bus)->CR1 = 0;
#ifdef SPI_I2SCFGR_I2SE
dev(bus)->I2SCFGR = 0;
#endif
dev(bus)->CR2 = SPI_CR2_SETTINGS;
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask);
}
void spi_init_pins(spi_t bus)
{
#ifdef CPU_FAM_STM32F1
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
gpio_init_af(spi_config[bus].sclk_pin, GPIO_AF_OUT_PP);
}
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
gpio_init_af(spi_config[bus].mosi_pin, GPIO_AF_OUT_PP);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
}
#else
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
gpio_init(spi_config[bus].mosi_pin, GPIO_OUT);
gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].mosi_af);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].miso_af);
}
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
gpio_init(spi_config[bus].sclk_pin, GPIO_OUT);
gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].sclk_af);
}
#endif
}
int spi_init_cs(spi_t bus, spi_cs_t cs)
{
if (bus >= SPI_NUMOF) {
return SPI_NODEV;
}
if (cs == SPI_CS_UNDEF ||
(((cs & SPI_HWCS_MASK) == SPI_HWCS_MASK) && (cs & ~(SPI_HWCS_MASK)))) {
return SPI_NOCS;
}
if (cs == SPI_HWCS_MASK) {
if (spi_config[bus].cs_pin == GPIO_UNDEF) {
return SPI_NOCS;
}
#ifdef CPU_FAM_STM32F1
gpio_init_af(spi_config[bus].cs_pin, GPIO_AF_OUT_PP);
#else
gpio_init(spi_config[bus].cs_pin, GPIO_OUT);
gpio_init_af(spi_config[bus].cs_pin, spi_config[bus].cs_af);
#endif
}
else {
gpio_init((gpio_t)cs, GPIO_OUT);
gpio_set((gpio_t)cs);
}
return SPI_OK;
}
#ifdef MODULE_PERIPH_SPI_GPIO_MODE
int spi_init_with_gpio_mode(spi_t bus, spi_gpio_mode_t mode)
{
assert(bus < SPI_NUMOF);
int ret = 0;
#ifdef CPU_FAM_STM32F1
/* This has no effect on STM32F1 */
return ret;
#else
if (gpio_is_valid(spi_config[bus].mosi_pin)) {
ret += gpio_init(spi_config[bus].mosi_pin, mode.mosi);
gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].mosi_af);
}
if (gpio_is_valid(spi_config[bus].miso_pin)) {
ret += gpio_init(spi_config[bus].miso_pin, mode.miso);
gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].miso_af);
}
if (gpio_is_valid(spi_config[bus].sclk_pin)) {
ret += gpio_init(spi_config[bus].sclk_pin, mode.sclk);
gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].sclk_af);
}
return ret;
#endif
}
#endif
int spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk)
{
/* lock bus */
mutex_lock(&locks[bus]);
#ifdef STM32_PM_STOP
/* block STOP mode */
pm_block(STM32_PM_STOP);
#endif
/* enable SPI device clock */
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask);
/* enable device */
if (clk != clocks[bus]) {
dividers[bus] = _get_clkdiv(&spi_config[bus], clk);
clocks[bus] = clk;
}
uint8_t br = dividers[bus];
DEBUG("[spi] acquire: requested clock: %"PRIu32", resulting clock: %"PRIu32
" BR divider: %u\n",
clk,
periph_apb_clk(spi_config[bus].apbbus)/(1 << (br + 1)),
br);
uint16_t cr1_settings = ((br << BR_SHIFT) | mode | SPI_CR1_MSTR);
/* Settings to add to CR2 in addition to SPI_CR2_SETTINGS */
uint16_t cr2_extra_settings = 0;
if (cs != SPI_HWCS_MASK) {
cr1_settings |= (SPI_CR1_SSM | SPI_CR1_SSI);
}
else {
cr2_extra_settings = (SPI_CR2_SSOE);
}
#ifdef MODULE_PERIPH_DMA
if (_use_dma(&spi_config[bus])) {
cr2_extra_settings |= SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN;
dma_acquire(spi_config[bus].tx_dma);
dma_setup(spi_config[bus].tx_dma,
spi_config[bus].tx_dma_chan,
(uint32_t*)&(dev(bus)->DR),
DMA_MEM_TO_PERIPH,
DMA_DATA_WIDTH_BYTE,
0);
dma_acquire(spi_config[bus].rx_dma);
dma_setup(spi_config[bus].rx_dma,
spi_config[bus].rx_dma_chan,
(uint32_t*)&(dev(bus)->DR),
DMA_PERIPH_TO_MEM,
DMA_DATA_WIDTH_BYTE,
0);
}
#endif
dev(bus)->CR1 = cr1_settings;
/* Only modify CR2 if needed */
if (cr2_extra_settings) {
dev(bus)->CR2 = (SPI_CR2_SETTINGS | cr2_extra_settings);
}
return SPI_OK;
}
void spi_release(spi_t bus)
{
#ifdef MODULE_PERIPH_DMA
if (_use_dma(&spi_config[bus])) {
dma_release(spi_config[bus].tx_dma);
dma_release(spi_config[bus].rx_dma);
}
#endif
/* disable device and release lock */
dev(bus)->CR1 = 0;
dev(bus)->CR2 = SPI_CR2_SETTINGS; /* Clear the DMA and SSOE flags */
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask);
#ifdef STM32_PM_STOP
/* unblock STOP mode */
pm_unblock(STM32_PM_STOP);
#endif
mutex_unlock(&locks[bus]);
}
static inline void _wait_for_end(spi_t bus)
{
/* make sure the transfer is completed before continuing, see reference
* manual(s) -> section 'Disabling the SPI' */
while (!(dev(bus)->SR & SPI_SR_TXE)) {}
while (dev(bus)->SR & SPI_SR_BSY) {}
}
#ifdef MODULE_PERIPH_DMA
static void _transfer_dma(spi_t bus, const void *out, void *in, size_t len)
{
uint8_t tmp = 0;
if (out) {
dma_prepare(spi_config[bus].tx_dma, (void*)out, len, 1);
}
else {
dma_prepare(spi_config[bus].tx_dma, &tmp, len, 0);
}
if (in) {
dma_prepare(spi_config[bus].rx_dma, in, len, 1);
}
else {
dma_prepare(spi_config[bus].rx_dma, &tmp, len, 0);
}
/* Start RX first to ensure it is active before the SPI transfers are
* triggered by the TX dma activity */
dma_start(spi_config[bus].rx_dma);
dma_start(spi_config[bus].tx_dma);
dma_wait(spi_config[bus].rx_dma);
dma_wait(spi_config[bus].tx_dma);
#ifdef DMA_CCR_EN
dma_stop(spi_config[bus].rx_dma);
dma_stop(spi_config[bus].tx_dma);
#endif
_wait_for_end(bus);
}
#endif
static void _transfer_no_dma(spi_t bus, const void *out, void *in, size_t len)
{
const uint8_t *outbuf = out;
uint8_t *inbuf = in;
/* we need to recast the data register to uint_8 to force 8-bit access */
volatile uint8_t *DR = (volatile uint8_t*)&(dev(bus)->DR);
/* transfer data, use shortpath if only sending data */
if (!inbuf) {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->SR & SPI_SR_TXE));
*DR = outbuf[i];
}
/* wait until everything is finished and empty the receive buffer */
while (!(dev(bus)->SR & SPI_SR_TXE)) {}
while (dev(bus)->SR & SPI_SR_BSY) {}
while (dev(bus)->SR & SPI_SR_RXNE) {
dev(bus)->DR; /* we might just read 2 bytes at once here */
}
}
else if (!outbuf) {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->SR & SPI_SR_TXE));
*DR = 0;
while (!(dev(bus)->SR & SPI_SR_RXNE));
inbuf[i] = *DR;
}
}
else {
for (size_t i = 0; i < len; i++) {
while (!(dev(bus)->SR & SPI_SR_TXE));
*DR = outbuf[i];
while (!(dev(bus)->SR & SPI_SR_RXNE));
inbuf[i] = *DR;
}
}
_wait_for_end(bus);
}
void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont,
const void *out, void *in, size_t len)
{
/* make sure at least one input or one output buffer is given */
assert(out || in);
/* active the given chip select line */
dev(bus)->CR1 |= (SPI_CR1_SPE); /* this pulls the HW CS line low */
if ((cs != SPI_HWCS_MASK) && (cs != SPI_CS_UNDEF)) {
gpio_clear((gpio_t)cs);
}
#ifdef MODULE_PERIPH_DMA
if (_use_dma(&spi_config[bus])) {
_transfer_dma(bus, out, in, len);
}
else {
#endif
_transfer_no_dma(bus, out, in, len);
#ifdef MODULE_PERIPH_DMA
}
#endif
/* release the chip select if not specified differently */
if ((!cont) && (cs != SPI_CS_UNDEF)) {
dev(bus)->CR1 &= ~(SPI_CR1_SPE); /* pull HW CS line high */
if (cs != SPI_HWCS_MASK) {
gpio_set((gpio_t)cs);
}
}
}