1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32/periph/ptp.c

219 lines
7.7 KiB
C
Raw Normal View History

/*
* Copyright (C) 2020 Otto-von-Guericke-Universität Magdeburg
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32
* @{
*
* @file
* @brief PTP clock and timer implementation
*
* @author Marian Buschsieweke <marian.buschsieweke@ovgu.de>
*
* @}
*/
#include <inttypes.h>
#include <string.h>
#include "assert.h"
#include "atomic_utils.h"
#include "bit.h"
#include "macros/units.h"
#include "periph/ptp.h"
#include "periph_conf.h"
#include "periph_cpu.h"
#include "timex.h"
2021-01-08 11:53:45 +01:00
#define ENABLE_DEBUG 0
#include "debug.h"
/* Workaround for typos in vendor files; drop when fixed upstream */
#ifndef ETH_PTPTSCR_TSSSR
#define ETH_PTPTSCR_TSSSR ETH_PTPTSSR_TSSSR
#endif
#ifndef ETH_PTPTSCR_TSSARFE
#define ETH_PTPTSCR_TSSARFE ETH_PTPTSSR_TSSARFE
#endif
/* PTPSSIR is the number of nanoseconds to add onto the sub-second register
* (the one counting the nanoseconds part of the timestamp with the
* configuration we chose here). It is therefore the resolution of the clock
* in nanoseconds. (Note that the accuracy is expected to be way worse than
* the resolution.)
*/
#ifndef STM32_PTPSSIR
#if CLOCK_CORECLOCK > MHZ(200)
/* Go for 10 ns resolution on CPU clocked higher than 200 MHz */
#define STM32_PTPSSIR (10LLU)
#elif CLOCK_CORECLOCK > MHZ(100)
/* Go for 20 ns resolution on CPU clocked higher than 100 MHz */
#define STM32_PTPSSIR (20LLU)
#else
/* Go for 50 ns resolution on CPU all other CPUs */
#define STM32_PTPSSIR (50LLU)
#endif /* CLOCK_CORECLOCK */
#endif /* !STM32_PTPSSIR */
/**
* @brief Return the result of x / y, scientifically rounded
* @param x Number to divide
* @param y @p x should be divided by this
* @return x/y, scientifically rounded
* @pre Both @p x and @p y are compile time constant integers and the
* expressions are evaluated without side-effects
*/
#define ROUNDED_DIV(x, y) (((x) + ((y) / 2)) / (y))
static const uint32_t ptpssir = STM32_PTPSSIR;
static const uint32_t ptptsar = ROUNDED_DIV(NS_PER_SEC * (1ULL << 32), CLOCK_AHB * STM32_PTPSSIR);
void ptp_init(void)
{
/* The PTP clock is initialized during periph_init(), while stm32_eth is
* initialized during auto_init(). As auto_init() depends on periph_init(),
* we can be sure that the PTP clock is always the first to use the
* Ethernet MAC. The Ethernet driver will skip the common initialization
* part when the PTP clock is used. */
stm32_eth_common_init();
/* In the following, the steps described in "Programming steps for
* system time generation initialization" on page 1805 in RM0410 Rev4
* are done */
/* Mask the time stamp trigger interrupt */
ETH->MACIMR |= ETH_MACIMR_TSTIM;
/* Set TSE bit in time stamp register to enable time stamping */
ETH->PTPTSCR |= ETH_PTPTSCR_TSE;
/* Use decimal mode (subsecond register counts nanoseconds, not in
* 2^(-31) seconds) */
ETH->PTPTSCR |= ETH_PTPTSCR_TSSSR;
/* Set subsecond increment register. This will be added onto the subsecond
* register whenever a 32 bit accumulator register overflows*/
ETH->PTPSSIR = ptpssir;
ptp_clock_adjust_speed(0);
/* Wait new PTPSAR value becomes active */
while (ETH->PTPTSCR & ETH_PTPTSCR_TSARU) { }
/* Enable fine grained correction now */
ETH->PTPTSCR |= ETH_PTPTSCR_TSFCU;
static const ptp_timestamp_t initial_time = {
.seconds = 0,
.nanoseconds = 0
};
ptp_clock_set(&initial_time);
if (IS_USED(MODULE_PERIPH_ETH)) {
/* enable timestamping of all received frames */
ETH->PTPTSCR |= ETH_PTPTSSR_TSSARFE;
}
DEBUG("[periph_ptp] Initialized with PTPSAR = %" PRIu32 ", PTPSSIR = %" PRIu32 "\n",
ptptsar, ptpssir);
}
void ptp_clock_adjust_speed(int16_t correction)
{
uint64_t offset = ptptsar;
offset *= correction;
offset >>= 16;
uint32_t adjusted_ptptsar = ptptsar + (uint32_t)offset;
/* Value to add onto the 32 bit accumulator register (which causes the
* value in ETH->PTPSSIR to be added onto the subsection register on
* overflow) */
ETH->PTPTSAR = adjusted_ptptsar;
/* Wait for pending clock speed adjustments to complete */
while (ETH->PTPTSCR & ETH_PTPTSCR_TSARU) { }
/* Load new PTPTSAR value to hardware */
ETH->PTPTSCR |= ETH_PTPTSCR_TSARU;
DEBUG("[periph_ptp] Using PTPSAR = %" PRIu32 ", PTPSSIR = %" PRIu32 "\n",
adjusted_ptptsar, ptpssir);
}
void ptp_clock_adjust(int64_t offset)
{
unsigned state = irq_disable();
ptp_timestamp_t ts;
uint64_t abs_offset = (offset < 0) ? -offset : offset;
ptp_ns2ts(&ts, abs_offset);
ETH->PTPTSHUR = ts.seconds;
ETH->PTPTSLUR = (offset < 0) ? (1UL << 31) | ts.nanoseconds : ts.nanoseconds;
while (ETH->PTPTSCR & (ETH_PTPTSCR_TSSTU | ETH_PTPTSCR_TSSTI)) {
/* wait until new time value can be set */
}
ETH->PTPTSCR |= ETH_PTPTSCR_TSSTU;
irq_restore(state);
DEBUG("[periph_ptp] Updated time by %c%" PRIu32 ".%09" PRIu32 "\n",
(offset < 0) ? '-' : '+', (uint32_t)ts.seconds, ts.nanoseconds);
}
void ptp_clock_set(const ptp_timestamp_t *time)
{
assert(time && time->nanoseconds < NS_PER_SEC);
unsigned state = irq_disable();
/* First, set the timestamp update registers */
ETH->PTPTSHUR = time->seconds;
ETH->PTPTSLUR = time->nanoseconds;
/* From the data sheet (regarding setting TSSTI):
* > Both the TSSTU and TSSTI bits must be read as zero before you can set
* > this bit.
*/
while (ETH->PTPTSCR & (ETH_PTPTSCR_TSSTU | ETH_PTPTSCR_TSSTI)) {
/* wait until new time value can be set */
}
/* Now, ask the peripheral to atomically set the clock from the update
* registers */
ETH->PTPTSCR |= ETH_PTPTSCR_TSSTI;
irq_restore(state);
}
void ptp_clock_read(ptp_timestamp_t *timestamp)
{
unsigned irq_state = irq_disable();
/* Read first high register, then low, then again high. If the value in
* high register changed between the reads, we start again to prevent
* corrupted timestamps being passed to the user. */
do {
timestamp->seconds = ETH->PTPTSHR;
timestamp->nanoseconds = ETH->PTPTSLR;
} while (timestamp->seconds != ETH->PTPTSHR);
/* TODO: Most significant bit of ETH->PTPTSLR is the sign bit of the time
* stamp. Because the seconds register is unsigned, an overflow is not
* expected before year 2106. It is not clear from the data sheet, how the
* time stamp is to be interpreted when the negative bit is set. For now,
* we just ignore this potential source of problems. */
irq_restore(irq_state);
}
#if IS_USED(MODULE_PERIPH_PTP_TIMER)
void ptp_timer_clear(void)
{
const atomic_bit_u32_t tsite = atomic_bit_u32(&ETH->PTPTSCR, ETH_PTPTSCR_TSITE_Pos);
atomic_clear_bit_u32(tsite);
}
void ptp_timer_set_absolute(const ptp_timestamp_t *target)
{
assert(target);
DEBUG("[periph_ptp] Set timer: %" PRIu32 ".%" PRIu32 "\n",
(uint32_t)target->seconds, target->nanoseconds);
unsigned state = irq_disable();
/* Mask PTP timer IRQ first, so that an interrupt is not triggered
* too early. (The target time is not set atomically.) */
ETH->MACIMR |= ETH_MACIMR_TSTIM;
/* Set target time */
ETH->PTPTTHR = target->seconds;
ETH->PTPTTLR = target->nanoseconds;
/* Enable PTP timer IRQ */
ETH->PTPTSCR |= ETH_PTPTSCR_TSITE;
/* Unmask the time stamp trigger interrupt */
ETH->MACIMR &= ~ETH_MACIMR_TSTIM;
irq_restore(state);
DEBUG("PTPTSCR: 0x%08x, MACIMR: 0x%08x, MACSR: 0x%08x\n",
(unsigned)ETH->PTPTSCR, (unsigned)ETH->MACIMR, (unsigned)ETH->MACSR);
}
#endif /* IS_USED(MODULE_PTP_TIMER) */