1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32/periph/i2c_2.c

487 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 Kaspar Schleiser <kaspar@schleiser.de>
* 2014 FU Berlin
* 2018 Inria
* 2018 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
2020-05-03 17:17:54 +02:00
* @ingroup cpu_stm32
* @ingroup drivers_periph_i2c
* @{
*
* @file
* @brief Low-level I2C driver implementation
*
* This driver supports the STM32 F1, F2, L1, and F4 families.
*
* @note This implementation only implements the 7-bit addressing polling mode.
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Toon Stegen <toon.stegen@altran.com>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Víctor Ariño <victor.arino@triagnosys.com>
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
* @author Kevin Weiss <kevin.weiss@haw-hamburg.de>
*
* @}
*/
#include <assert.h>
#include <stdint.h>
#include <errno.h>
#include "cpu.h"
#include "irq.h"
#include "mutex.h"
#include "pm_layered.h"
#include "periph/i2c.h"
#include "periph/gpio.h"
#include "periph_conf.h"
/* Some DEBUG statements may cause delays that alter i2c functionality */
2020-10-22 11:34:00 +02:00
#define ENABLE_DEBUG 0
#include "debug.h"
#define TICK_TIMEOUT (0xFFFF)
#define I2C_IRQ_PRIO (1)
#define I2C_FLAG_READ (I2C_READ)
#define I2C_FLAG_WRITE (0)
#define ERROR_FLAG (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR)
/* static function definitions */
static void _init(i2c_t dev);
static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr);
static int _start(I2C_TypeDef *dev, uint8_t address_byte, uint8_t flags,
size_t length);
static int _stop(I2C_TypeDef *dev);
static int _is_sr1_mask_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags);
static inline int _wait_for_bus(I2C_TypeDef *i2c);
static void _init_pins(i2c_t dev);
/**
* @brief Array holding one pre-initialized mutex for each I2C device
*/
static mutex_t locks[I2C_NUMOF];
void i2c_init(i2c_t dev)
{
assert(dev < I2C_NUMOF);
mutex_init(&locks[dev]);
assert(i2c_config[dev].dev != NULL);
periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
NVIC_SetPriority(i2c_config[dev].irqn, I2C_IRQ_PRIO);
NVIC_EnableIRQ(i2c_config[dev].irqn);
_init(dev);
#if defined(CPU_FAM_STM32F4)
/* make sure the analog filters don't hang -> see errata sheet 2.14.7 */
if (i2c_config[dev].dev->SR2 & I2C_SR2_BUSY) {
/* disable peripheral */
i2c_config[dev].dev->CR1 &= ~I2C_CR1_PE;
/* toggle both pins to reset analog filter */
gpio_init(i2c_config[dev].scl_pin, GPIO_OD);
gpio_init(i2c_config[dev].sda_pin, GPIO_OD);
gpio_set(i2c_config[dev].sda_pin);
gpio_set(i2c_config[dev].scl_pin);
gpio_clear(i2c_config[dev].sda_pin);
gpio_clear(i2c_config[dev].scl_pin);
gpio_set(i2c_config[dev].sda_pin);
gpio_set(i2c_config[dev].scl_pin);
_init(dev);
}
#endif
}
static void _init_pins(i2c_t dev)
{
/* configure pins */
gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU);
gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU);
#ifdef CPU_FAM_STM32F1
/* This is needed in case the remapped pins are used */
if (i2c_config[dev].scl_pin == GPIO_PIN(PORT_B, 8) ||
i2c_config[dev].sda_pin == GPIO_PIN(PORT_B, 9)) {
/* The remapping periph clock must first be enabled */
RCC->APB2ENR |= RCC_APB2ENR_AFIOEN;
/* Then the remap can occur */
AFIO->MAPR |= AFIO_MAPR_I2C1_REMAP;
}
gpio_init_af(i2c_config[dev].scl_pin, GPIO_AF_OUT_OD);
gpio_init_af(i2c_config[dev].sda_pin, GPIO_AF_OUT_OD);
#else
gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af);
gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af);
#endif
}
static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr)
{
/* disable device and set ACK bit */
i2c->CR1 = I2C_CR1_ACK;
/* configure I2C clock */
i2c->CR2 = (clk / 1000000) | I2C_CR2_ITERREN;
i2c->CCR = ccr;
i2c->TRISE = (clk / 1000000) + 1;
/* configure device */
/* configure device */
i2c->OAR1 |= (1 << 14); /* datasheet: bit 14 should be kept 1 */
i2c->OAR1 &= ~I2C_OAR1_ADDMODE; /* make sure we are in 7-bit address mode */
/* Clear flags */
i2c->SR1 &= ~ERROR_FLAG;
/* enable device */
i2c->CR1 |= I2C_CR1_PE;
}
static void _init(i2c_t dev)
{
I2C_TypeDef *i2c = i2c_config[dev].dev;
uint32_t ccr = 0;
/* read speed configuration */
switch (i2c_config[dev].speed) {
case I2C_SPEED_LOW:
/* 10Kbit/s */
ccr = i2c_config[dev].clk / 20000;
break;
case I2C_SPEED_NORMAL:
/* 100Kbit/s */
ccr = i2c_config[dev].clk / 200000;
break;
case I2C_SPEED_FAST:
ccr = i2c_config[dev].clk / 800000;
break;
}
/* make peripheral soft reset */
i2c->CR1 |= I2C_CR1_SWRST;
_init_pins(dev);
i2c->CR1 &= ~I2C_CR1_SWRST;
/* configure device */
_i2c_init(i2c, i2c_config[dev].clk, ccr);
}
int i2c_acquire(i2c_t dev)
{
assert(dev < I2C_NUMOF);
mutex_lock(&locks[dev]);
#ifdef STM32_PM_STOP
/* block STOP mode */
pm_block(STM32_PM_STOP);
#endif
periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
/* enable device */
i2c_config[dev].dev->CR1 |= I2C_CR1_PE;
return 0;
}
void i2c_release(i2c_t dev)
{
assert(dev < I2C_NUMOF);
/* disable device */
i2c_config[dev].dev->CR1 &= ~(I2C_CR1_PE);
_wait_for_bus(i2c_config[dev].dev);
periph_clk_dis(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
#ifdef STM32_PM_STOP
/* unblock STOP mode */
pm_unblock(STM32_PM_STOP);
#endif
mutex_unlock(&locks[dev]);
}
int i2c_read_bytes(i2c_t dev, uint16_t address, void *data, size_t length,
uint8_t flags)
{
assert(dev < I2C_NUMOF);
I2C_TypeDef *i2c = i2c_config[dev].dev;
DEBUG("[i2c] read_bytes: Starting\n");
/* Do not support repeated start reading
* The repeated start read requires the bus to be busy (I2C_SR2_BUSY == 1)
* the previous R/W state to be a read (I2C_SR2_TRA == 0)
* and for the command not to be split frame (I2C_NOSTART == 0)
*/
if (((i2c->SR2 & (I2C_SR2_BUSY | I2C_SR2_TRA)) == I2C_SR2_BUSY) &&
!(flags & I2C_NOSTART)) {
return -EOPNOTSUPP;
}
int ret = _start(i2c, (address << 1) | I2C_FLAG_READ, flags, length);
if (ret < 0) {
if (ret == -ETIMEDOUT) {
_init(dev);
}
return ret;
}
for (size_t i = 0; i < length; i++) {
if (i + 1 == length && !(flags & I2C_NOSTOP)) {
/* If data is already in the buffer we must clear before sending
a stop. If I2C_NOSTOP was called up to two extra bytes may be
clocked out on the line however they get ignored in the firmware.*/
if ((i2c->SR1 & I2C_SR1_RXNE) && (length == 1)) {
((uint8_t*)data)[i] = i2c->DR;
return _stop(i2c);
}
/* Stop must also be sent before final read */
ret = _stop(i2c);
if (ret < 0) {
return ret;
}
}
/* Wait for reception to complete */
ret = _is_sr1_mask_set(i2c, I2C_SR1_RXNE, flags);
if (ret < 0) {
return ret;
}
((uint8_t*)data)[i] = i2c->DR;
}
DEBUG("[i2c] read_bytes: Finished reading bytes\n");
if (flags & I2C_NOSTOP) {
return 0;
}
return _wait_for_bus(i2c);
}
int i2c_write_bytes(i2c_t dev, uint16_t address, const void *data,
size_t length, uint8_t flags)
{
assert(dev < I2C_NUMOF);
int ret;
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
DEBUG("[i2c] write_bytes: Starting\n");
/* Length is 0 in start since we don't need to preset the stop bit */
ret = _start(i2c, (address << 1) | I2C_FLAG_WRITE, flags, 0);
if (ret < 0) {
if (ret == -ETIMEDOUT) {
_init(dev);
}
return ret;
}
/* Send out data bytes */
for (size_t i = 0; i < length; i++) {
DEBUG("[i2c] write_bytes: Waiting for TX reg to be free\n");
ret = _is_sr1_mask_set(i2c, I2C_SR1_TXE, flags);
if (ret < 0) {
return ret;
}
DEBUG("[i2c] write_bytes: TX is free so send byte\n");
i2c->DR = ((uint8_t*)data)[i];
}
/* Wait for tx reg to be empty so other calls will no interfere */
ret = _is_sr1_mask_set(i2c, I2C_SR1_TXE, flags);
if (ret < 0) {
return ret;
}
if (flags & I2C_NOSTOP) {
return 0;
}
else {
/* End transmission */
DEBUG("[i2c] write_bytes: Ending transmission\n");
ret = _stop(i2c);
if (ret < 0) {
return ret;
}
DEBUG("[i2c] write_bytes: STOP condition was send out\n");
}
return _wait_for_bus(i2c);
}
static int _start(I2C_TypeDef *i2c, uint8_t address_byte, uint8_t flags,
size_t length)
{
assert(i2c != NULL);
if ((flags & I2C_ADDR10) ||
(!(i2c->SR2 & I2C_SR2_BUSY) && (flags & I2C_NOSTART))) {
return -EOPNOTSUPP;
}
/* Clear flags */
i2c->SR1 &= ~ERROR_FLAG;
if (!(flags & I2C_NOSTART)) {
DEBUG("[i2c] start: Generate start condition\n");
/* Generate start condition */
i2c->CR1 |= I2C_CR1_START | I2C_CR1_ACK;
/* Wait for SB flag to be set */
int ret = _is_sr1_mask_set(i2c, I2C_SR1_SB, flags & ~I2C_NOSTOP);
if (ret < 0) {
return ret;
}
DEBUG("[i2c] start: Start condition generated\n");
DEBUG("[i2c] start: Generating address\n");
/* Send address and read/write flag */
i2c->DR = (address_byte);
if (!(flags & I2C_NOSTOP) && length == 1) {
i2c->CR1 &= ~(I2C_CR1_ACK);
}
/* Wait for ADDR flag to be set */
ret = _is_sr1_mask_set(i2c, I2C_SR1_ADDR, flags & ~I2C_NOSTOP);
if (ret == -EIO){
/* Since NACK happened during start it means no device connected */
return -ENXIO;
}
/* Needed to clear address bit */
i2c->SR2;
if (!(flags & I2C_NOSTOP) && length == 1) {
/* Stop must also be sent before final read */
i2c->CR1 |= (I2C_CR1_STOP);
}
DEBUG("[i2c] start: Address generated\n");
return ret;
}
return 0;
}
static int _is_sr1_mask_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags)
{
DEBUG("[i2c] _is_sr1_mask_set: waiting to set %04X\n", (uint16_t)mask);
uint16_t tick = TICK_TIMEOUT;
while (tick--) {
uint32_t sr1 = i2c->SR1;
if (sr1 & I2C_SR1_AF) {
DEBUG("[i2c] is_sr1_mask_set: NACK received\n");
i2c->SR1 &= ~ERROR_FLAG;
if (!(flags & I2C_NOSTOP)) {
_stop(i2c);
}
return -EIO;
}
if ((sr1 & I2C_SR1_ARLO) || (sr1 & I2C_SR1_BERR)) {
DEBUG("[i2c] is_sr1_mask_set: arb lost or bus ERROR_FLAG\n");
i2c->SR1 &= ~ERROR_FLAG;
_stop(i2c);
return -EAGAIN;
}
if (sr1 & mask) {
i2c->SR1 &= ~ERROR_FLAG;
return 0;
}
}
/*
* If timeout occurs this means a problem that must be handled on a higher
* level. A SWRST is recommended by the datasheet.
*/
i2c->SR1 &= ~ERROR_FLAG;
_stop(i2c);
return -ETIMEDOUT;
}
static int _stop(I2C_TypeDef *i2c)
{
/* send STOP condition */
DEBUG("[i2c] stop: Generate stop condition\n");
i2c->CR1 &= ~(I2C_CR1_ACK);
i2c->CR1 |= I2C_CR1_STOP;
uint16_t tick = TICK_TIMEOUT;
while ((i2c->CR1 & I2C_CR1_STOP) && tick--) {}
if (!tick) {
return -ETIMEDOUT;
}
DEBUG("[i2c] stop: Stop condition succeeded\n");
if (_wait_for_bus(i2c) < 0) {
return -ETIMEDOUT;
}
DEBUG("[i2c] stop: Bus is free\n");
return 0;
}
static inline int _wait_for_bus(I2C_TypeDef *i2c)
{
uint16_t tick = TICK_TIMEOUT;
while ((i2c->SR2 & I2C_SR2_BUSY) && tick--) {}
if (!tick) {
return -ETIMEDOUT;
}
return 0;
}
#if I2C_0_ISR || I2C_1_ISR
static inline void irq_handler(i2c_t dev)
{
assert(dev < I2C_NUMOF);
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
unsigned state = i2c->SR1;
DEBUG("\n\n### I2C ERROR OCCURRED ###\n");
DEBUG("status: %08x\n", state);
if (state & I2C_SR1_OVR) {
DEBUG("OVR\n");
}
if (state & I2C_SR1_AF) {
DEBUG("AF\n");
}
if (state & I2C_SR1_ARLO) {
DEBUG("ARLO\n");
}
if (state & I2C_SR1_BERR) {
DEBUG("BERR\n");
}
if (state & I2C_SR1_PECERR) {
DEBUG("PECERR\n");
}
if (state & I2C_SR1_TIMEOUT) {
DEBUG("TIMEOUT\n");
}
if (state & I2C_SR1_SMBALERT) {
DEBUG("SMBALERT\n");
}
core_panic(PANIC_GENERAL_ERROR, "I2C FAULT");
}
#endif
#if I2C_0_ISR
void I2C_0_ISR(void)
{
irq_handler(I2C_DEV(0));
}
#endif /* I2C_0_ISR */
#if I2C_1_ISR
void I2C_1_ISR(void)
{
irq_handler(I2C_DEV(1));
}
#endif /* I2C_1_ISR */