mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
461 lines
13 KiB
C
461 lines
13 KiB
C
|
/*
|
||
|
* Copyright (c) 2002, 2004, 2010 Joerg Wunsch
|
||
|
* Copyright (c) 2010 Gerben van den Broeke
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
*
|
||
|
* 3. Neither the name of the copyright holders nor the names of
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* Modified by Gunar Schorcht
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @ingroup cpu
|
||
|
* @{
|
||
|
*
|
||
|
* @file
|
||
|
* @brief MSP430 malloc/free memory management functions
|
||
|
*
|
||
|
* AVR libc functions adapted for MSP430 CPUs.
|
||
|
*
|
||
|
* @author Gunar Schorcht <gunar@schorcht.net>
|
||
|
*
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#include "irq.h"
|
||
|
|
||
|
#ifdef MODULE_MSP430_MALLOC
|
||
|
|
||
|
#define asmv(arg) __asm__ __volatile__(arg)
|
||
|
|
||
|
#define STACK_EXTRA 32
|
||
|
|
||
|
#define __brkval cur_break
|
||
|
#define __malloc_heap_end __heap_end
|
||
|
|
||
|
/* May be changed by the user only before the first malloc() call. */
|
||
|
extern int _end; /* provided by linker script */
|
||
|
extern char *cur_break;
|
||
|
extern char *__heap_end;
|
||
|
|
||
|
struct __freelist {
|
||
|
size_t sz;
|
||
|
struct __freelist *nx;
|
||
|
};
|
||
|
|
||
|
size_t __malloc_margin = STACK_EXTRA;
|
||
|
char *__malloc_heap_start = (char*)&_end;
|
||
|
|
||
|
struct __freelist *__flp;
|
||
|
|
||
|
void *
|
||
|
malloc(size_t len)
|
||
|
{
|
||
|
struct __freelist *fp1, *fp2, *sfp1, *sfp2;
|
||
|
char *cp;
|
||
|
size_t s;
|
||
|
unsigned state;
|
||
|
|
||
|
state = irq_disable();
|
||
|
|
||
|
/*
|
||
|
* Our minimum chunk size is the size of a pointer (plus the
|
||
|
* size of the "sz" field, but we don't need to account for
|
||
|
* this), otherwise we could not possibly fit a freelist entry
|
||
|
* into the chunk later.
|
||
|
*/
|
||
|
if (len < sizeof(struct __freelist) - sizeof(size_t)) {
|
||
|
len = sizeof(struct __freelist) - sizeof(size_t);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* First, walk the free list and try finding a chunk that
|
||
|
* would match exactly. If we found one, we are done. While
|
||
|
* walking, note down the smallest chunk we found that would
|
||
|
* still fit the request -- we need it for step 2.
|
||
|
*
|
||
|
*/
|
||
|
for (s = 0, fp1 = __flp, fp2 = 0; fp1; fp2 = fp1, fp1 = fp1->nx) {
|
||
|
if (fp1->sz < len) {
|
||
|
continue;
|
||
|
}
|
||
|
if (fp1->sz == len) {
|
||
|
/*
|
||
|
* Found it. Disconnect the chunk from the
|
||
|
* freelist, and return it.
|
||
|
*/
|
||
|
if (fp2) {
|
||
|
fp2->nx = fp1->nx;
|
||
|
}
|
||
|
else {
|
||
|
__flp = fp1->nx;
|
||
|
}
|
||
|
irq_restore(state);
|
||
|
return &(fp1->nx);
|
||
|
}
|
||
|
else {
|
||
|
if (s == 0 || fp1->sz < s) {
|
||
|
/* this is the smallest chunk found so far */
|
||
|
s = fp1->sz;
|
||
|
sfp1 = fp1;
|
||
|
sfp2 = fp2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* Step 2: If we found a chunk on the freelist that would fit
|
||
|
* (but was too large), look it up again and use it, since it
|
||
|
* is our closest match now. Since the freelist entry needs
|
||
|
* to be split into two entries then, watch out that the
|
||
|
* difference between the requested size and the size of the
|
||
|
* chunk found is large enough for another freelist entry; if
|
||
|
* not, just enlarge the request size to what we have found,
|
||
|
* and use the entire chunk.
|
||
|
*/
|
||
|
if (s) {
|
||
|
if (s - len < sizeof(struct __freelist)) {
|
||
|
/* Disconnect it from freelist and return it. */
|
||
|
if (sfp2) {
|
||
|
sfp2->nx = sfp1->nx;
|
||
|
}
|
||
|
else {
|
||
|
__flp = sfp1->nx;
|
||
|
}
|
||
|
irq_restore(state);
|
||
|
return &(sfp1->nx);
|
||
|
}
|
||
|
/*
|
||
|
* Split them up. Note that we leave the first part
|
||
|
* as the new (smaller) freelist entry, and return the
|
||
|
* upper portion to the caller. This saves us the
|
||
|
* work to fix up the freelist chain; we just need to
|
||
|
* fixup the size of the current entry, and note down
|
||
|
* the size of the new chunk before returning it to
|
||
|
* the caller.
|
||
|
*/
|
||
|
cp = (char *)sfp1;
|
||
|
s -= len;
|
||
|
cp += s;
|
||
|
sfp2 = (struct __freelist *)cp;
|
||
|
sfp2->sz = len;
|
||
|
sfp1->sz = s - sizeof(size_t);
|
||
|
irq_restore(state);
|
||
|
return &(sfp2->nx);
|
||
|
}
|
||
|
/*
|
||
|
* Step 3: If the request could not be satisfied from a
|
||
|
* freelist entry, just prepare a new chunk. This means we
|
||
|
* need to obtain more memory first. The largest address just
|
||
|
* not allocated so far is remembered in the brkval variable.
|
||
|
* Under Unix, the "break value" was the end of the data
|
||
|
* segment as dynamically requested from the operating system.
|
||
|
* Since we don't have an operating system, just make sure
|
||
|
* that we don't collide with the stack.
|
||
|
*/
|
||
|
size_t avail;
|
||
|
if (__brkval == NULL) {
|
||
|
__brkval = __malloc_heap_start;
|
||
|
}
|
||
|
cp = __malloc_heap_end;
|
||
|
if (cp == NULL) {
|
||
|
char *stack_pointer;
|
||
|
asmv("mov r1, %0" : "=r"(stack_pointer));
|
||
|
cp = stack_pointer - __malloc_margin;
|
||
|
}
|
||
|
if (cp <= __brkval) {
|
||
|
/*
|
||
|
* Memory exhausted.
|
||
|
*/
|
||
|
irq_restore(state);
|
||
|
return 0;
|
||
|
}
|
||
|
avail = cp - __brkval;
|
||
|
/*
|
||
|
* Both tests below are needed to catch the case len >= 0xfffe.
|
||
|
*/
|
||
|
if (avail >= len && avail >= len + sizeof(size_t)) {
|
||
|
fp1 = (struct __freelist *)__brkval;
|
||
|
__brkval += len + sizeof(size_t);
|
||
|
fp1->sz = len;
|
||
|
irq_restore(state);
|
||
|
return &(fp1->nx);
|
||
|
}
|
||
|
/*
|
||
|
* Step 4: There's no help, just fail. :-/
|
||
|
*/
|
||
|
irq_restore(state);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
free(void *p)
|
||
|
{
|
||
|
struct __freelist *fp1, *fp2, *fpnew;
|
||
|
char *cp1, *cp2, *cpnew;
|
||
|
unsigned state;
|
||
|
|
||
|
state = irq_disable();
|
||
|
|
||
|
/* ISO C says free(NULL) must be a no-op */
|
||
|
if (p == NULL) {
|
||
|
irq_restore(state);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cpnew = p;
|
||
|
cpnew -= sizeof(size_t);
|
||
|
fpnew = (struct __freelist *)cpnew;
|
||
|
fpnew->nx = 0;
|
||
|
|
||
|
/*
|
||
|
* Trivial case first: if there's no freelist yet, our entry
|
||
|
* will be the only one on it. If this is the last entry, we
|
||
|
* can reduce __brkval instead.
|
||
|
*/
|
||
|
if (__flp == NULL) {
|
||
|
if ((char *)p + fpnew->sz == __brkval) {
|
||
|
__brkval = cpnew;
|
||
|
}
|
||
|
else {
|
||
|
__flp = fpnew;
|
||
|
}
|
||
|
irq_restore(state);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now, find the position where our new entry belongs onto the
|
||
|
* freelist. Try to aggregate the chunk with adjacent chunks
|
||
|
* if possible.
|
||
|
*/
|
||
|
for (fp1 = __flp, fp2 = 0;
|
||
|
fp1;
|
||
|
fp2 = fp1, fp1 = fp1->nx) {
|
||
|
if (fp1 < fpnew) {
|
||
|
continue;
|
||
|
}
|
||
|
cp1 = (char *)fp1;
|
||
|
fpnew->nx = fp1;
|
||
|
if ((char *)&(fpnew->nx) + fpnew->sz == cp1) {
|
||
|
/* upper chunk adjacent, assimilate it */
|
||
|
fpnew->sz += fp1->sz + sizeof(size_t);
|
||
|
fpnew->nx = fp1->nx;
|
||
|
}
|
||
|
if (fp2 == NULL) {
|
||
|
/* new head of freelist */
|
||
|
__flp = fpnew;
|
||
|
irq_restore(state);
|
||
|
return;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* Note that we get here either if we hit the "break" above,
|
||
|
* or if we fell off the end of the loop. The latter means
|
||
|
* we've got a new topmost chunk. Either way, try aggregating
|
||
|
* with the lower chunk if possible.
|
||
|
*/
|
||
|
fp2->nx = fpnew;
|
||
|
cp2 = (char *)&(fp2->nx);
|
||
|
if (cp2 + fp2->sz == cpnew) {
|
||
|
/* lower junk adjacent, merge */
|
||
|
fp2->sz += fpnew->sz + sizeof(size_t);
|
||
|
fp2->nx = fpnew->nx;
|
||
|
}
|
||
|
/*
|
||
|
* If there's a new topmost chunk, lower __brkval instead.
|
||
|
*/
|
||
|
for (fp1 = __flp, fp2 = 0;
|
||
|
fp1->nx != NULL;
|
||
|
fp2 = fp1, fp1 = fp1->nx)
|
||
|
/* advance to entry just before end of list */;
|
||
|
cp2 = (char *)&(fp1->nx);
|
||
|
if (cp2 + fp1->sz == __brkval) {
|
||
|
if (fp2 == NULL) {
|
||
|
/* Freelist is empty now. */
|
||
|
__flp = NULL;
|
||
|
}
|
||
|
else {
|
||
|
fp2->nx = NULL;
|
||
|
}
|
||
|
__brkval = cp2 - sizeof(size_t);
|
||
|
}
|
||
|
|
||
|
irq_restore(state);
|
||
|
}
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
void *
|
||
|
realloc(void *ptr, size_t len)
|
||
|
{
|
||
|
struct __freelist *fp1, *fp2, *fp3, *ofp3;
|
||
|
char *cp, *cp1;
|
||
|
void *memp;
|
||
|
size_t s, incr;
|
||
|
unsigned state;
|
||
|
|
||
|
/* Trivial case, required by C standard. */
|
||
|
if (ptr == NULL) {
|
||
|
return malloc(len);
|
||
|
}
|
||
|
|
||
|
state = irq_disable();
|
||
|
|
||
|
cp1 = (char *)ptr;
|
||
|
cp1 -= sizeof(size_t);
|
||
|
fp1 = (struct __freelist *)cp1;
|
||
|
|
||
|
cp = (char *)ptr + len; /* new next pointer */
|
||
|
if (cp < cp1) {
|
||
|
/* Pointer wrapped across top of RAM, fail. */
|
||
|
irq_restore(state);
|
||
|
return 0;
|
||
|
}
|
||
|
/*
|
||
|
* See whether we are growing or shrinking. When shrinking,
|
||
|
* we split off a chunk for the released portion, and call
|
||
|
* free() on it. Therefore, we can only shrink if the new
|
||
|
* size is at least sizeof(struct __freelist) smaller than the
|
||
|
* previous size.
|
||
|
*/
|
||
|
if (len <= fp1->sz) {
|
||
|
/* The first test catches a possible unsigned int
|
||
|
* rollover condition. */
|
||
|
if (fp1->sz <= sizeof(struct __freelist) ||
|
||
|
len > fp1->sz - sizeof(struct __freelist)) {
|
||
|
irq_restore(state);
|
||
|
return ptr;
|
||
|
}
|
||
|
fp2 = (struct __freelist *)cp;
|
||
|
fp2->sz = fp1->sz - len - sizeof(size_t);
|
||
|
fp1->sz = len;
|
||
|
free(&(fp2->nx));
|
||
|
irq_restore(state);
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we get here, we are growing. First, see whether there
|
||
|
* is space in the free list on top of our current chunk.
|
||
|
*/
|
||
|
incr = len - fp1->sz;
|
||
|
cp = (char *)ptr + fp1->sz;
|
||
|
fp2 = (struct __freelist *)cp;
|
||
|
for (s = 0, ofp3 = 0, fp3 = __flp;
|
||
|
fp3;
|
||
|
ofp3 = fp3, fp3 = fp3->nx) {
|
||
|
if (fp3 == fp2 && fp3->sz + sizeof(size_t) >= incr) {
|
||
|
/* found something that fits */
|
||
|
if (fp3->sz + sizeof(size_t) - incr > sizeof(struct __freelist)) {
|
||
|
/* split off a new freelist entry */
|
||
|
cp = (char *)ptr + len;
|
||
|
fp2 = (struct __freelist *)cp;
|
||
|
fp2->nx = fp3->nx;
|
||
|
fp2->sz = fp3->sz - incr;
|
||
|
fp1->sz = len;
|
||
|
}
|
||
|
else {
|
||
|
/* it just fits, so use it entirely */
|
||
|
fp1->sz += fp3->sz + sizeof(size_t);
|
||
|
fp2 = fp3->nx;
|
||
|
}
|
||
|
if (ofp3) {
|
||
|
ofp3->nx = fp2;
|
||
|
}
|
||
|
else {
|
||
|
__flp = fp2;
|
||
|
}
|
||
|
irq_restore(state);
|
||
|
return ptr;
|
||
|
}
|
||
|
/*
|
||
|
* Find the largest chunk on the freelist while
|
||
|
* walking it.
|
||
|
*/
|
||
|
if (fp3->sz > s) {
|
||
|
s = fp3->sz;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* If we are the topmost chunk in memory, and there was no
|
||
|
* large enough chunk on the freelist that could be re-used
|
||
|
* (by a call to malloc() below), quickly extend the
|
||
|
* allocation area if possible, without need to copy the old
|
||
|
* data.
|
||
|
*/
|
||
|
if (__brkval == (char *)ptr + fp1->sz && len > s) {
|
||
|
cp1 = __malloc_heap_end;
|
||
|
cp = (char *)ptr + len;
|
||
|
if (cp1 == NULL) {
|
||
|
char *stack_pointer;
|
||
|
asmv("mov r1, %0" : "=r"(stack_pointer));
|
||
|
cp1 = stack_pointer - __malloc_margin;
|
||
|
}
|
||
|
if (cp < cp1) {
|
||
|
__brkval = cp;
|
||
|
fp1->sz = len;
|
||
|
irq_restore(state);
|
||
|
return ptr;
|
||
|
}
|
||
|
/* If that failed, we are out of luck. */
|
||
|
irq_restore(state);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Call malloc() for a new chunk, then copy over the data, and
|
||
|
* release the old region.
|
||
|
*/
|
||
|
if ((memp = malloc(len)) == NULL) {
|
||
|
irq_restore(state);
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(memp, ptr, fp1->sz);
|
||
|
free(ptr);
|
||
|
irq_restore(state);
|
||
|
return memp;
|
||
|
}
|
||
|
|
||
|
void *
|
||
|
calloc(size_t nele, size_t size)
|
||
|
{
|
||
|
void *p;
|
||
|
|
||
|
if ((p = malloc(nele * size)) == NULL) {
|
||
|
return 0;
|
||
|
}
|
||
|
memset(p, 0, nele * size);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
#endif /* MODULE_MSP430_MALLOC */
|