1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 10:12:45 +01:00
RIOT/sys/include/byteorder.h

777 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 René Kijewski
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup sys
* @{
*
* @file
* @brief Functions to work with different byte orders.
*
* @author René Kijewski <rene.kijewski@fu-berlin.de>
*/
#ifndef BYTEORDER_H
#define BYTEORDER_H
#include <string.h>
#include <stdint.h>
#include "unaligned.h"
#if defined(__MACH__)
# include "clang_compat.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* ******************************* INTERFACE ******************************* */
/**
* @brief A 16 bit integer in little endian.
* @details This is a wrapper around an uint16_t to catch missing conversions
* between different byte orders at compile time.
*/
typedef union __attribute__((packed)) {
2020-03-30 17:02:08 +02:00
uint16_t u16; /**< 16 bit representation */
uint8_t u8[2]; /**< 8 bit representation */
} le_uint16_t;
/**
* @brief A 32 bit integer in little endian.
* @details This is a wrapper around an uint32_t to catch missing conversions
* between different byte orders at compile time.
*/
typedef union __attribute__((packed)) {
2020-03-30 17:02:08 +02:00
uint32_t u32; /**< 32 bit representation */
uint8_t u8[4]; /**< 8 bit representation */
uint16_t u16[2]; /**< 16 bit representation */
le_uint16_t l16[2]; /**< little endian 16 bit representation */
} le_uint32_t;
/**
* @brief A 64 bit integer in little endian.
* @details This is a wrapper around an uint64_t to catch missing conversions
* between different byte orders at compile time.
*/
typedef union __attribute__((packed)) {
2020-03-30 17:02:08 +02:00
uint64_t u64; /**< 64 bit representation */
uint8_t u8[8]; /**< 8 bit representation */
uint16_t u16[4]; /**< 16 bit representation */
uint32_t u32[2]; /**< 32 bit representation */
le_uint16_t l16[4]; /**< little endian 16 bit representation */
le_uint32_t l32[2]; /**< little endian 32 bit representation */
} le_uint64_t;
/**
* @brief A 16 bit integer in big endian aka network byte order.
* @details This is a wrapper around an uint16_t to catch missing conversions
* between different byte orders at compile time.
*/
typedef union __attribute__((packed)) {
2020-03-30 17:02:08 +02:00
uint16_t u16; /**< 16 bit representation */
uint8_t u8[2]; /**< 8 bit representation */
} be_uint16_t;
/**
* @brief A 32 bit integer in big endian aka network byte order.
* @details This is a wrapper around an uint32_t to catch missing conversions
* between different byte orders at compile time.
*/
typedef union __attribute__((packed)) {
2020-03-30 17:02:08 +02:00
uint32_t u32; /**< 32 bit representation */
uint8_t u8[4]; /**< 8 bit representation */
uint16_t u16[2]; /**< 16 bit representation */
be_uint16_t b16[2]; /**< big endian 16 bit representation */
} be_uint32_t;
/**
* @brief A 64 bit integer in big endian aka network byte order.
* @details This is a wrapper around an uint64_t to catch missing conversions
* between different byte orders at compile time.
*/
typedef union __attribute__((packed)) {
2020-03-30 17:02:08 +02:00
uint64_t u64; /**< 64 bit representation */
uint8_t u8[8]; /**< 8 bit representation */
uint16_t u16[4]; /**< 16 bit representation */
uint32_t u32[2]; /**< 32 bit representation */
be_uint16_t b16[4]; /**< big endian 16 bit representation */
be_uint32_t b32[2]; /**< big endian 32 bit representation */
} be_uint64_t;
/**
* @brief A 16 bit integer in network byte order.
*/
typedef be_uint16_t network_uint16_t;
/**
* @brief A 32 bit integer in network byte order.
*/
typedef be_uint32_t network_uint32_t;
/**
* @brief A 64 bit integer in network byte order.
*/
typedef be_uint64_t network_uint64_t;
/**
* @brief Convert from little endian to host byte order, 16 bit.
* @param[in] v The integer in little endian.
* @returns `v` converted to host byte order.
*/
static inline uint16_t byteorder_ltohs(le_uint16_t v);
/**
* @brief Convert from little endian to host byte order, 32 bit.
* @param[in] v The integer in little endian.
* @returns `v` converted to host byte order.
*/
static inline uint32_t byteorder_ltohl(le_uint32_t v);
/**
* @brief Convert from little endian to host byte order, 64 bit.
* @param[in] v The integer in little endian.
* @returns `v` converted to host byte order.
*/
static inline uint64_t byteorder_ltohll(le_uint64_t v);
/**
* @brief Convert from little endian to big endian, 16 bit.
* @param[in] v The integer in little endian.
* @returns `v` converted to big endian.
*/
static inline be_uint16_t byteorder_ltobs(le_uint16_t v);
/**
* @brief Convert from little endian to big endian, 32 bit.
* @param[in] v The integer in little endian.
* @returns `v` converted to big endian.
*/
static inline be_uint32_t byteorder_ltobl(le_uint32_t v);
/**
* @brief Convert from little endian to big endian, 64 bit.
* @param[in] v The integer in little endian.
* @returns `v` converted to big endian.
*/
static inline be_uint64_t byteorder_ltobll(le_uint64_t v);
/**
* @brief Convert from big endian to little endian, 16 bit.
* @param[in] v The integer in big endian.
* @returns `v` converted to little endian.
*/
static inline le_uint16_t byteorder_btols(be_uint16_t v);
/**
* @brief Convert from big endian to little endian, 32 bit.
* @param[in] v The integer in big endian.
* @returns `v` converted to little endian.
*/
static inline le_uint32_t byteorder_btoll(be_uint32_t v);
/**
* @brief Convert from big endian to little endian, 64 bit.
* @param[in] v The integer in big endian.
* @returns `v` converted to little endian.
*/
static inline le_uint64_t byteorder_btolll(be_uint64_t v);
/**
* @brief Convert from host byte order to little endian, 16 bit.
* @param[in] v The integer in host byte order.
* @returns `v` converted to little endian.
*/
static inline le_uint16_t byteorder_htols(uint16_t v);
/**
* @brief Convert from host byte order to little endian, 32 bit.
* @param[in] v The integer in host byte order.
* @returns `v` converted to little endian.
*/
static inline le_uint32_t byteorder_htoll(uint32_t v);
/**
* @brief Convert from host byte order to little endian, 64 bit.
* @param[in] v The integer in host byte order.
* @returns `v` converted to little endian.
*/
static inline le_uint64_t byteorder_htolll(uint64_t v);
/**
* @brief Convert from host byte order to network byte order, 16 bit.
* @param[in] v The integer in host byte order.
* @returns `v` converted to network byte order.
*/
static inline network_uint16_t byteorder_htons(uint16_t v);
/**
* @brief Convert from host byte order to network byte order, 32 bit.
* @param[in] v The integer in host byte order.
* @returns `v` converted to network byte order.
*/
static inline network_uint32_t byteorder_htonl(uint32_t v);
/**
* @brief Convert from host byte order to network byte order, 64 bit.
* @param[in] v The integer in host byte order.
* @returns `v` converted to network byte order.
*/
static inline network_uint64_t byteorder_htonll(uint64_t v);
/**
* @brief Convert from network byte order to host byte order, 16 bit.
* @param[in] v The integer in network byte order.
* @returns `v` converted to host byte order.
*/
static inline uint16_t byteorder_ntohs(network_uint16_t v);
/**
* @brief Convert from network byte order to host byte order, 32 bit.
* @param[in] v The integer in network byte order.
* @returns `v` converted to host byte order.
*/
static inline uint32_t byteorder_ntohl(network_uint32_t v);
/**
* @brief Convert from network byte order to host byte order, 64 bit.
* @param[in] v The integer in network byte order.
* @returns `v` converted to host byte order.
*/
static inline uint64_t byteorder_ntohll(network_uint64_t v);
/**
* @brief Swap byte order, 16 bit.
* @param[in] v The integer to swap.
* @returns The swapped integer.
*/
static inline uint16_t byteorder_swaps(uint16_t v);
/**
* @brief Swap byte order, 32 bit.
* @param[in] v The integer to swap.
* @returns The swapped integer.
*/
static inline uint32_t byteorder_swapl(uint32_t v);
/**
* @brief Swap byte order, 64 bit.
* @param[in] v The integer to swap.
* @returns The swapped integer.
*/
static inline uint64_t byteorder_swapll(uint64_t v);
/**
* @brief Read a big endian encoded unsigned integer from a buffer
* into host byte order encoded variable, 16-bit
*
* @note This function is agnostic to the alignment of the target
* value in the given buffer
*
* @param[in] buf position in a buffer holding the target value
*
* @return 16-bit unsigned integer in host byte order
*/
static inline uint16_t byteorder_bebuftohs(const uint8_t *buf);
/**
* @brief Read a big endian encoded unsigned integer from a buffer
* into host byte order encoded variable, 32-bit
*
* @note This function is agnostic to the alignment of the target
* value in the given buffer
*
* @param[in] buf position in a buffer holding the target value
*
* @return 32-bit unsigned integer in host byte order
*/
static inline uint32_t byteorder_bebuftohl(const uint8_t *buf);
/**
* @brief Read a big endian encoded unsigned integer from a buffer
* into host byte order encoded variable, 64-bit
*
* @note This function is agnostic to the alignment of the target
* value in the given buffer
*
* @param[in] buf position in a buffer holding the target value
*
* @return 64-bit unsigned integer in host byte order
*/
static inline uint64_t byteorder_bebuftohll(const uint8_t *buf);
/**
* @brief Write a host byte order encoded unsigned integer as big
* endian encoded value into a buffer, 16-bit
*
* @note This function is alignment agnostic and works with any given
* memory location of the buffer
*
* @param[out] buf target buffer, must be able to accept 2 bytes
* @param[in] val value written to the buffer, in host byte order
*/
static inline void byteorder_htobebufs(uint8_t *buf, uint16_t val);
/**
* @brief Write a host byte order encoded unsigned integer as big
* endian encoded value into a buffer, 32-bit
*
* @note This function is alignment agnostic and works with any given
* memory location of the buffer
*
* @param[out] buf target buffer, must be able to accept 4 bytes
* @param[in] val value written to the buffer, in host byte order
*/
static inline void byteorder_htobebufl(uint8_t *buf, uint32_t val);
/**
* @brief Write a host byte order encoded unsigned integer as big
* endian encoded value into a buffer, 64-bit
*
* @note This function is alignment agnostic and works with any given
* memory location of the buffer
*
* @param[out] buf target buffer, must be able to accept 8 bytes
* @param[in] val value written to the buffer, in host byte order
*/
static inline void byteorder_htobebufll(uint8_t *buf, uint64_t val);
/**
* @brief Convert from host byte order to network byte order, 16 bit.
* @see byteorder_htons()
* @param[in] v The integer to convert.
* @returns Converted integer.
*/
static inline uint16_t htons(uint16_t v);
/**
* @brief Convert from host byte order to network byte order, 32 bit.
* @see byteorder_htonl()
* @param[in] v The integer to convert.
* @returns Converted integer.
*/
static inline uint32_t htonl(uint32_t v);
/**
* @brief Convert from host byte order to network byte order, 64 bit.
* @see byteorder_htonll()
* @param[in] v The integer to convert.
* @returns Converted integer.
*/
static inline uint64_t htonll(uint64_t v);
/**
* @brief Convert from network byte order to host byte order, 16 bit.
* @see byteorder_ntohs()
* @param[in] v The integer to convert.
* @returns Converted integer.
*/
static inline uint16_t ntohs(uint16_t v);
/**
* @brief Convert from network byte order to host byte order, 32 bit.
* @see byteorder_ntohl()
* @param[in] v The integer to convert.
* @returns Converted integer.
*/
static inline uint32_t ntohl(uint32_t v);
/**
* @brief Convert from network byte order to host byte order, 64 bit.
* @see byteorder_ntohll()
* @param[in] v The integer to convert.
* @returns Converted integer.
*/
static inline uint64_t ntohll(uint64_t v);
/* **************************** IMPLEMENTATION ***************************** */
#ifdef HAVE_NO_BUILTIN_BSWAP16
static inline unsigned short __builtin_bswap16(unsigned short a)
{
2020-03-30 17:02:08 +02:00
return (a << 8) | (a >> 8);
}
#endif
2014-10-21 19:50:37 +02:00
static inline uint16_t byteorder_swaps(uint16_t v)
{
#ifndef MODULE_MSP430_COMMON
return __builtin_bswap16(v);
#else
network_uint16_t result = { v };
uint8_t tmp = result.u8[0];
result.u8[0] = result.u8[1];
result.u8[1] = tmp;
return result.u16;
#endif
}
2014-10-21 19:50:37 +02:00
static inline uint32_t byteorder_swapl(uint32_t v)
{
return __builtin_bswap32(v);
}
2014-10-21 19:50:37 +02:00
static inline uint64_t byteorder_swapll(uint64_t v)
{
return __builtin_bswap64(v);
}
/**
* @brief Swaps the byteorder according to the endianness (host -> le)
*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define _byteorder_swap_le(V, T) (V)
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define _byteorder_swap_le(V, T) (byteorder_swap ## T((V)))
#else
# error "Byte order is neither little nor big!"
#endif
static inline uint16_t byteorder_ltohs(le_uint16_t v)
{
return _byteorder_swap_le(v.u16, s);
}
static inline uint32_t byteorder_ltohl(le_uint32_t v)
{
return _byteorder_swap_le(v.u32, l);
}
static inline uint64_t byteorder_ltohll(le_uint64_t v)
{
return _byteorder_swap_le(v.u64, ll);
}
2014-10-21 19:50:37 +02:00
static inline be_uint16_t byteorder_ltobs(le_uint16_t v)
{
be_uint16_t result = { byteorder_swaps(v.u16) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline be_uint32_t byteorder_ltobl(le_uint32_t v)
{
be_uint32_t result = { byteorder_swapl(v.u32) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline be_uint64_t byteorder_ltobll(le_uint64_t v)
{
be_uint64_t result = { byteorder_swapll(v.u64) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline le_uint16_t byteorder_btols(be_uint16_t v)
{
le_uint16_t result = { byteorder_swaps(v.u16) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline le_uint32_t byteorder_btoll(be_uint32_t v)
{
le_uint32_t result = { byteorder_swapl(v.u32) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline le_uint64_t byteorder_btolll(be_uint64_t v)
{
le_uint64_t result = { byteorder_swapll(v.u64) };
2020-03-30 17:02:08 +02:00
return result;
}
static inline le_uint16_t byteorder_htols(uint16_t v)
{
le_uint16_t result = { _byteorder_swap_le(v, s) };
return result;
}
static inline le_uint32_t byteorder_htoll(uint32_t v)
{
le_uint32_t result = { _byteorder_swap_le(v, l) };
return result;
}
static inline le_uint64_t byteorder_htolll(uint64_t v)
{
le_uint64_t result = { _byteorder_swap_le(v, ll) };
return result;
}
/**
* @brief Swaps the byteorder according to the endianness (host -> BE)
*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
2020-03-30 17:02:08 +02:00
# define _byteorder_swap(V, T) (byteorder_swap ## T((V)))
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define _byteorder_swap(V, T) (V)
#else
# error "Byte order is neither little nor big!"
#endif
2014-10-21 19:50:37 +02:00
static inline network_uint16_t byteorder_htons(uint16_t v)
{
network_uint16_t result = { _byteorder_swap(v, s) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline network_uint32_t byteorder_htonl(uint32_t v)
{
network_uint32_t result = { _byteorder_swap(v, l) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline network_uint64_t byteorder_htonll(uint64_t v)
{
network_uint64_t result = { _byteorder_swap(v, ll) };
2020-03-30 17:02:08 +02:00
return result;
}
2014-10-21 19:50:37 +02:00
static inline uint16_t byteorder_ntohs(network_uint16_t v)
{
return _byteorder_swap(v.u16, s);
}
2014-10-21 19:50:37 +02:00
static inline uint32_t byteorder_ntohl(network_uint32_t v)
{
return _byteorder_swap(v.u32, l);
}
2014-10-21 19:50:37 +02:00
static inline uint64_t byteorder_ntohll(network_uint64_t v)
{
return _byteorder_swap(v.u64, ll);
}
static inline uint16_t htons(uint16_t v)
{
2014-11-30 22:34:50 +01:00
return byteorder_htons(v).u16;
}
static inline uint32_t htonl(uint32_t v)
{
2014-11-30 22:34:50 +01:00
return byteorder_htonl(v).u32;
}
static inline uint64_t htonll(uint64_t v)
{
2014-11-30 22:34:50 +01:00
return byteorder_htonll(v).u64;
}
static inline uint16_t ntohs(uint16_t v)
{
2014-11-30 22:34:50 +01:00
network_uint16_t input = { v };
2020-03-30 17:02:08 +02:00
return byteorder_ntohs(input);
}
static inline uint32_t ntohl(uint32_t v)
{
2014-11-30 22:34:50 +01:00
network_uint32_t input = { v };
2020-03-30 17:02:08 +02:00
return byteorder_ntohl(input);
}
static inline uint64_t ntohll(uint64_t v)
{
2014-11-30 22:34:50 +01:00
network_uint64_t input = { v };
2020-03-30 17:02:08 +02:00
return byteorder_ntohll(input);
}
static inline uint16_t byteorder_bebuftohs(const uint8_t *buf)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return (uint16_t)((buf[0] << 8) | (buf[1] << 0));
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* big endian to big endian conversion is easy, but buffer might be
* unaligned */
return unaligned_get_u16(buf);
#endif
}
static inline uint32_t byteorder_bebuftohl(const uint8_t *buf)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return (((uint32_t) buf[0] << 24)
| ((uint32_t) buf[1] << 16)
| ((uint32_t) buf[2] << 8)
| ((uint32_t) buf[3] << 0));
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* big endian to big endian conversion is easy, but buffer might be
* unaligned */
return unaligned_get_u32(buf);
#endif
}
static inline uint64_t byteorder_bebuftohll(const uint8_t *buf)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return (((uint64_t) buf[0] << 56)
| ((uint64_t) buf[1] << 48)
| ((uint64_t) buf[2] << 40)
| ((uint64_t) buf[3] << 32)
| ((uint64_t) buf[4] << 24)
| ((uint64_t) buf[5] << 16)
| ((uint64_t) buf[6] << 8)
| ((uint64_t) buf[7] << 0));
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* big endian to big endian conversion is easy, but buffer might be
* unaligned */
return unaligned_get_u64(buf);
#endif
}
static inline void byteorder_htobebufs(uint8_t *buf, uint16_t val)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
buf[0] = (uint8_t)(val >> 8);
buf[1] = (uint8_t)(val >> 0);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* big endian to big endian conversion is easy, but buffer might be
* unaligned */
memcpy(buf, &val, sizeof(val));
#endif
}
static inline void byteorder_htobebufl(uint8_t *buf, uint32_t val)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
buf[0] = (uint8_t)(val >> 24);
buf[1] = (uint8_t)(val >> 16);
buf[2] = (uint8_t)(val >> 8);
buf[3] = (uint8_t)(val >> 0);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* big endian to big endian conversion is easy, but buffer might be
* unaligned */
memcpy(buf, &val, sizeof(val));
#endif
}
static inline void byteorder_htobebufll(uint8_t *buf, uint64_t val)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
buf[0] = (uint8_t)(val >> 56);
buf[1] = (uint8_t)(val >> 48);
buf[2] = (uint8_t)(val >> 40);
buf[3] = (uint8_t)(val >> 32);
buf[4] = (uint8_t)(val >> 24);
buf[5] = (uint8_t)(val >> 16);
buf[6] = (uint8_t)(val >> 8);
buf[7] = (uint8_t)(val >> 0);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* big endian to big endian conversion is easy, but buffer might be
* unaligned */
memcpy(buf, &val, sizeof(val));
#endif
}
static inline uint16_t byteorder_lebuftohs(const uint8_t *buf)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* little endian to little endian conversion is easy, but buffer might be
* unaligned */
return unaligned_get_u16(buf);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return (uint16_t)((buf[0] << 8) | (buf[1] << 0));
#endif
}
static inline uint32_t byteorder_lebuftohl(const uint8_t *buf)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* little endian to little endian conversion is easy, but buffer might be
* unaligned */
return unaligned_get_u32(buf);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return (((uint32_t) buf[0] << 24)
| ((uint32_t) buf[1] << 16)
| ((uint32_t) buf[2] << 8)
| ((uint32_t) buf[3] << 0));
#endif
}
static inline uint64_t byteorder_lebuftohll(const uint8_t *buf)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* little endian to little endian conversion is easy, but buffer might be
* unaligned */
return unaligned_get_u64(buf);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return (((uint64_t) buf[0] << 56)
| ((uint64_t) buf[1] << 48)
| ((uint64_t) buf[2] << 40)
| ((uint64_t) buf[3] << 32)
| ((uint64_t) buf[4] << 24)
| ((uint64_t) buf[5] << 16)
| ((uint64_t) buf[6] << 8)
| ((uint64_t) buf[7] << 0));
#endif
}
static inline void byteorder_htolebufs(uint8_t *buf, uint16_t val)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* little endian to little endian conversion is easy, but buffer might be
* unaligned */
memcpy(buf, &val, sizeof(val));
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
buf[0] = (uint8_t)(val >> 8);
buf[1] = (uint8_t)(val >> 0);
#endif
}
static inline void byteorder_htolebufl(uint8_t *buf, uint32_t val)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* little endian to little endian conversion is easy, but buffer might be
* unaligned */
memcpy(buf, &val, sizeof(val));
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
buf[0] = (uint8_t)(val >> 24);
buf[1] = (uint8_t)(val >> 16);
buf[2] = (uint8_t)(val >> 8);
buf[3] = (uint8_t)(val >> 0);
#endif
}
static inline void byteorder_htolebufll(uint8_t *buf, uint64_t val)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* little endian to little endian conversion is easy, but buffer might be
* unaligned */
memcpy(buf, &val, sizeof(val));
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
buf[0] = (uint8_t)(val >> 56);
buf[1] = (uint8_t)(val >> 48);
buf[2] = (uint8_t)(val >> 40);
buf[3] = (uint8_t)(val >> 32);
buf[4] = (uint8_t)(val >> 24);
buf[5] = (uint8_t)(val >> 16);
buf[6] = (uint8_t)(val >> 8);
buf[7] = (uint8_t)(val >> 0);
#endif
}
#ifdef __cplusplus
}
#endif
#endif /* BYTEORDER_H */
/** @} */