1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/sam0_common/periph/adc.c

437 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 Dan Evans <photonthunder@gmail.com>
* Copyright (C) 2017 Travis Griggs <travisgriggs@gmail.com>
* Copyright (C) 2017 Dylan Laduranty <dylanladuranty@gmail.com>
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_adc
* @{
*
* @file
* @brief Low-level ADC driver implementation
*
* @}
*/
#include <stdint.h>
#include "cpu.h"
#include "periph/gpio.h"
#include "periph/adc.h"
#include "periph_conf.h"
#include "macros/utils.h"
#include "mutex.h"
2020-10-22 11:34:00 +02:00
#define ENABLE_DEBUG 0
#include "debug.h"
#ifndef ADC_GCLK_SRC
#define ADC_GCLK_SRC SAM0_GCLK_MAIN
#endif
#ifndef ADC_GAIN_FACTOR_DEFAULT
#define ADC_GAIN_FACTOR_DEFAULT (0)
#endif
#ifndef ADC_NEG_INPUT
#define ADC_NEG_INPUT (0)
#endif
/* Prototypes */
static void _adc_poweroff(Adc *dev);
static void _setup_clock(Adc *dev);
static void _setup_calibration(Adc *dev);
static int _adc_configure(Adc *dev, adc_res_t res);
static mutex_t _lock = MUTEX_INIT;
static inline void _wait_syncbusy(Adc *dev)
{
#ifdef ADC_STATUS_SYNCBUSY
while (dev->STATUS.reg & ADC_STATUS_SYNCBUSY) {}
#else
/* Ignore the ADC SYNCBUSY.SWTRIG status
* The ADC SYNCBUSY.SWTRIG gets stuck to '1' after wake-up from Standby Sleep mode.
* SAMD5x/SAME5x errata: DS80000748 (page 10)
*/
while (dev->SYNCBUSY.reg & ~ADC_SYNCBUSY_SWTRIG) {}
#endif
}
static void _adc_poweroff(Adc *dev)
{
_wait_syncbusy(dev);
/* Disable */
dev->CTRLA.reg &= ~ADC_CTRLA_ENABLE;
_wait_syncbusy(dev);
/* Disable bandgap */
#ifdef SYSCTRL_VREF_BGOUTEN
if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INT1V) {
SYSCTRL->VREF.reg &= ~SYSCTRL_VREF_BGOUTEN;
}
#else
if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INTREF) {
SUPC->VREF.reg &= ~SUPC_VREF_VREFOE;
}
#endif
}
static void _setup_clock(Adc *dev)
{
/* Enable gclk in case we are the only user */
sam0_gclk_enable(ADC_GCLK_SRC);
#ifdef PM_APBCMASK_ADC
/* Power On */
PM->APBCMASK.reg |= PM_APBCMASK_ADC;
/* GCLK Setup */
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN
| GCLK_CLKCTRL_GEN(ADC_GCLK_SRC)
| GCLK_CLKCTRL_ID(ADC_GCLK_ID);
/* Configure prescaler */
dev->CTRLB.reg = ADC_PRESCALER;
#else
/* Power on */
#ifdef MCLK_APBCMASK_ADC
MCLK->APBCMASK.reg |= MCLK_APBCMASK_ADC;
#else
#ifdef MCLK_APBDMASK_ADC0
if (dev == ADC0) {
MCLK->APBDMASK.reg |= MCLK_APBDMASK_ADC0;
} else {
MCLK->APBDMASK.reg |= MCLK_APBDMASK_ADC1;
}
#else
MCLK->APBDMASK.reg |= MCLK_APBDMASK_ADC;
#endif
#endif
#ifdef ADC0_GCLK_ID
/* GCLK Setup */
if (dev == ADC0) {
GCLK->PCHCTRL[ADC0_GCLK_ID].reg = GCLK_PCHCTRL_CHEN
| GCLK_PCHCTRL_GEN(ADC_GCLK_SRC);
}
else {
GCLK->PCHCTRL[ADC1_GCLK_ID].reg = GCLK_PCHCTRL_CHEN
| GCLK_PCHCTRL_GEN(ADC_GCLK_SRC);
}
/* Configure prescaler */
dev->CTRLA.reg = ADC_PRESCALER;
#else
/* GCLK Setup */
GCLK->PCHCTRL[ADC_GCLK_ID].reg = GCLK_PCHCTRL_CHEN
| GCLK_PCHCTRL_GEN(ADC_GCLK_SRC);
/* Configure prescaler */
dev->CTRLB.reg = ADC_PRESCALER;
#endif
#endif
}
static void _setup_calibration(Adc *dev)
{
#ifdef ADC_CALIB_BIAS_CAL
/* Load the fixed device calibration constants */
dev->CALIB.reg =
ADC_CALIB_BIAS_CAL((*(uint32_t*)ADC_FUSES_BIASCAL_ADDR >>
ADC_FUSES_BIASCAL_Pos)) |
ADC_CALIB_LINEARITY_CAL((*(uint64_t*)ADC_FUSES_LINEARITY_0_ADDR >>
ADC_FUSES_LINEARITY_0_Pos));
#else
/* Set default calibration from NVM */
#ifdef ADC0_FUSES_BIASCOMP_ADDR
if (dev == ADC0) {
dev->CALIB.reg =
ADC0_FUSES_BIASCOMP((*(uint32_t*)ADC0_FUSES_BIASCOMP_ADDR)) >>
ADC_CALIB_BIASCOMP_Pos |
ADC0_FUSES_BIASREFBUF((*(uint32_t*)ADC0_FUSES_BIASREFBUF_ADDR) >>
ADC0_FUSES_BIASREFBUF_Pos);
}
else {
dev->CALIB.reg =
ADC1_FUSES_BIASCOMP((*(uint32_t*)ADC1_FUSES_BIASCOMP_ADDR)) >>
ADC_CALIB_BIASCOMP_Pos |
ADC1_FUSES_BIASREFBUF((*(uint32_t*)ADC1_FUSES_BIASREFBUF_ADDR) >>
ADC1_FUSES_BIASREFBUF_Pos);
}
#else
dev->CALIB.reg =
ADC_FUSES_BIASCOMP((*(uint32_t*)ADC_FUSES_BIASCOMP_ADDR)) >>
ADC_CALIB_BIASCOMP_Pos |
ADC_FUSES_BIASREFBUF((*(uint32_t*)ADC_FUSES_BIASREFBUF_ADDR) >>
ADC_FUSES_BIASREFBUF_Pos);
#endif
#endif
}
static int _adc_configure(Adc *dev, adc_res_t res)
{
if ((res == ADC_RES_6BIT) || (res == ADC_RES_14BIT)) {
return -1;
}
_adc_poweroff(dev);
if (dev->CTRLA.reg & ADC_CTRLA_SWRST ||
dev->CTRLA.reg & ADC_CTRLA_ENABLE ) {
DEBUG("adc: not ready\n");
return -1;
}
_setup_clock(dev);
_setup_calibration(dev);
/* Set ADC resolution */
#ifdef ADC_CTRLC_RESSEL
/* Reset resolution bits in CTRLC */
dev->CTRLC.bit.RESSEL = res & 0x3;
#else
/* Reset resolution bits in CTRLB */
dev->CTRLB.bit.RESSEL = res & 0x3;
#endif
/* Set Voltage Reference */
dev->REFCTRL.reg = ADC_REF_DEFAULT;
/* Disable all interrupts */
dev->INTENCLR.reg = 0xFF;
#ifdef SYSCTRL_VREF_BGOUTEN
/* Enable bandgap if VREF is internal 1V */
if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INT1V) {
SYSCTRL->VREF.reg |= SYSCTRL_VREF_BGOUTEN;
}
#else
/* Enable bandgap if necessary */
if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INTREF) {
SUPC->VREF.reg |= SUPC_VREF_VREFOE;
}
#endif
#ifdef ADC_REFCTRL_REFSEL_AREFA
if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_AREFA) {
gpio_init_mux(ADC_REFSEL_AREFA_PIN, GPIO_MUX_B);
}
#endif
#ifdef ADC_REFCTRL_REFSEL_AREFB
if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_AREFB) {
gpio_init_mux(ADC_REFSEL_AREFB_PIN, GPIO_MUX_B);
}
#endif
#ifdef ADC_REFCTRL_REFSEL_AREFC
if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_AREFC) {
gpio_init_mux(ADC_REFSEL_AREFC_PIN, GPIO_MUX_B);
}
#endif
if ((res & 0x3) == 1) {
dev->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM(res >> 2);
} else {
dev->AVGCTRL.reg = 0;
}
/* Enable ADC Module */
dev->CTRLA.reg |= ADC_CTRLA_ENABLE;
_wait_syncbusy(dev);
return 0;
}
int adc_init(adc_t line)
{
if (line >= ADC_NUMOF) {
DEBUG("adc: line arg not applicable\n");
return -1;
}
#ifdef ADC0
const uint8_t adc = adc_channels[line].dev == ADC1 ? 1 : 0;
#else
const uint8_t adc = 0;
#endif
mutex_lock(&_lock);
uint8_t muxpos = (adc_channels[line].inputctrl & ADC_INPUTCTRL_MUXPOS_Msk)
>> ADC_INPUTCTRL_MUXPOS_Pos;
uint8_t muxneg = (adc_channels[line].inputctrl & ADC_INPUTCTRL_MUXNEG_Msk)
>> ADC_INPUTCTRL_MUXNEG_Pos;
/* configure positive input pin */
if (muxpos < 0x18) {
assert(muxpos < ARRAY_SIZE(sam0_adc_pins[adc]));
gpio_init(sam0_adc_pins[adc][muxpos], GPIO_IN);
gpio_init_mux(sam0_adc_pins[adc][muxpos], GPIO_MUX_B);
}
/* configure negative input pin */
if (adc_channels[line].inputctrl & ADC_INPUTCTRL_DIFFMODE) {
assert(muxneg < ARRAY_SIZE(sam0_adc_pins[adc]));
gpio_init(sam0_adc_pins[adc][muxneg], GPIO_IN);
gpio_init_mux(sam0_adc_pins[adc][muxneg], GPIO_MUX_B);
}
mutex_unlock(&_lock);
return 0;
}
static Adc *_dev(adc_t line)
{
/* The SAMD5x/SAME5x family has two ADCs: ADC0 and ADC1. */
#ifdef ADC0
return adc_channels[line].dev;
#else
(void)line;
return ADC;
#endif
}
static Adc *_adc(uint8_t dev)
{
/* The SAMD5x/SAME5x family has two ADCs: ADC0 and ADC1. */
#ifdef ADC0
switch (dev) {
case 0:
return ADC0;
case 1:
return ADC1;
default:
return NULL;
}
#else
(void)dev;
return ADC;
#endif
}
static int32_t _sample(adc_t line)
{
Adc *dev = _dev(line);
bool diffmode = adc_channels[line].inputctrl & ADC_INPUTCTRL_DIFFMODE;
dev->INPUTCTRL.reg = ADC_GAIN_FACTOR_DEFAULT
| adc_channels[line].inputctrl
| (diffmode ? 0 : ADC_NEG_INPUT);
#ifdef ADC_CTRLB_DIFFMODE
dev->CTRLB.bit.DIFFMODE = diffmode;
#endif
_wait_syncbusy(dev);
/* Start the conversion */
dev->SWTRIG.reg = ADC_SWTRIG_START;
/* Wait for the result */
while (!(dev->INTFLAG.reg & ADC_INTFLAG_RESRDY)) {}
uint16_t sample = dev->RESULT.reg;
int result;
/* in differential mode we lose one bit for the sign */
if (diffmode) {
result = 2 * (int16_t)sample;
} else {
result = sample;
}
return result;
}
static uint8_t _shift_from_res(adc_res_t res)
{
/* 16 bit mode is implemented as oversampling */
if ((res & 0x3) == 1) {
/* ADC does automatic right shifts beyond 16 samples */
return 4 - MIN(4, res >> 2);
}
return 0;
}
static void _get_adcs(bool *adc0, bool *adc1)
{
#ifndef ADC1
*adc0 = true;
*adc1 = false;
return;
#else
*adc0 = false;
*adc1 = false;
for (unsigned i = 0; i < ADC_NUMOF; ++i) {
if (adc_channels[i].dev == ADC0) {
*adc0 = true;
} else if (adc_channels[i].dev == ADC1) {
*adc1 = true;
}
}
#endif
}
static uint8_t _shift;
void adc_continuous_begin(adc_res_t res)
{
bool adc0, adc1;
_get_adcs(&adc0, &adc1);
mutex_lock(&_lock);
if (adc0) {
_adc_configure(_adc(0), res);
}
if (adc1) {
_adc_configure(_adc(1), res);
}
_shift = _shift_from_res(res);
}
int32_t adc_continuous_sample(adc_t line)
{
assert(line < ADC_NUMOF);
assert(mutex_trylock(&_lock) == 0);
return _sample(line) << _shift;
}
void adc_continuous_stop(void)
{
bool adc0, adc1;
_get_adcs(&adc0, &adc1);
if (adc0) {
_adc_poweroff(_adc(0));
}
if (adc1) {
_adc_poweroff(_adc(1));
}
mutex_unlock(&_lock);
}
int32_t adc_sample(adc_t line, adc_res_t res)
{
if (line >= ADC_NUMOF) {
DEBUG("adc: line arg not applicable\n");
return -1;
}
mutex_lock(&_lock);
Adc *dev = _dev(line);
if (_adc_configure(dev, res) != 0) {
DEBUG("adc: configuration failed\n");
mutex_unlock(&_lock);
return -1;
}
int val = _sample(line) << _shift_from_res(res);
_adc_poweroff(dev);
mutex_unlock(&_lock);
return val;
}