2019-12-30 12:51:36 +01:00
|
|
|
## TensorFlow Lite sample application
|
|
|
|
|
|
|
|
This application contains several examples of usage of TensorFlow Lite for
|
|
|
|
microcontrollers:
|
|
|
|
- The default example, `mnist` contains a complete example to perform
|
|
|
|
hand-written digit recognition: it shows how to train a very simple
|
|
|
|
MLP (Multi-Layer Perceptron) model and how to reuse it in a RIOT application.
|
|
|
|
The code of this example is provided as an external module in the
|
|
|
|
[mnist](mnist) directory.
|
2020-03-05 08:48:34 +01:00
|
|
|
- The other example, [Hello World](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro/examples/hello_world),
|
2019-12-30 12:51:36 +01:00
|
|
|
taken as-is from TensorFlow Lite code, simply replicates a `sine` function
|
|
|
|
from a trained model.
|
2019-11-27 11:55:47 +01:00
|
|
|
|
|
|
|
To get started with TensorFlow Lite on microcontrollers, please refer to
|
|
|
|
[this page](https://www.tensorflow.org/lite/microcontrollers).
|
|
|
|
|
2019-12-30 12:51:36 +01:00
|
|
|
### Usage
|
2019-11-27 11:55:47 +01:00
|
|
|
|
|
|
|
Simply run the application on the board of your choice using:
|
|
|
|
|
2023-05-06 07:48:58 +02:00
|
|
|
make BOARD=<board of your choice> -C tests/pkg/tensorflow-lite flash term
|
2019-11-27 11:55:47 +01:00
|
|
|
|
2019-12-30 12:51:36 +01:00
|
|
|
Set `EXAMPLE=hello_world` from the command line to try the upstream hello_world
|
|
|
|
example.
|
|
|
|
|
2019-11-27 11:55:47 +01:00
|
|
|
Then type 's' to start the application.
|
|
|
|
|
2019-12-30 12:51:36 +01:00
|
|
|
### Examples details
|
|
|
|
|
|
|
|
#### mnist
|
|
|
|
|
|
|
|
expected output
|
|
|
|
---------------
|
|
|
|
|
|
|
|
```
|
|
|
|
Digit prediction: 7
|
|
|
|
```
|
|
|
|
|
|
|
|
scripts usage
|
|
|
|
-------------
|
|
|
|
|
|
|
|
First, install tensorflow:
|
|
|
|
|
|
|
|
```
|
|
|
|
pip3 install --user tensorflow
|
|
|
|
```
|
|
|
|
|
|
|
|
The scripts require TensorFlow >= 2, so a fairly recent version of pip is
|
|
|
|
required.
|
|
|
|
|
|
|
|
The `mnist_mlp` example comes with 2 Python scripts:
|
|
|
|
- `mnist_mlp.py` is used to train and store the model. To minimize the size of
|
|
|
|
the generated model, the script uses
|
|
|
|
[post-training quantization](https://www.tensorflow.org/lite/performance/post_training_quantization).
|
|
|
|
The quantized model is stored in the `model.tflite` file in the FlatBuffers
|
|
|
|
format and is embedded in the application using the BLOB mechanism.
|
|
|
|
- `generate_digit.py` is used to generate the `digit` from the MNIST dataset
|
|
|
|
test data. The default digit generated corresponds to a 7.
|
|
|
|
Use the `-i` option to choose another digit. The script displays the
|
|
|
|
generated digit so you can compare with the prediction made by the RIOT
|
|
|
|
application.
|
|
|
|
Note that after a new digit is generated the firmware has to be rebuilt so
|
|
|
|
that it embeds the array containing the pixel values.
|
|
|
|
|
|
|
|
#### hello_world
|
|
|
|
|
|
|
|
expected output
|
2019-11-27 11:55:47 +01:00
|
|
|
---------------
|
|
|
|
|
|
|
|
The application prints the values of the `sine` function:
|
|
|
|
```
|
|
|
|
x_value: 1.0*2^-127, y_value: 1.9783614*2^-8
|
|
|
|
|
|
|
|
x_value: 1.2566366*2^-2, y_value: 1.3910355*2^-2
|
|
|
|
|
|
|
|
x_value: 1.2566366*2^-1, y_value: 1.1282844*2^-1
|
|
|
|
|
|
|
|
x_value: 1.8849551*2^-1, y_value: 1.5455950*2^-1
|
|
|
|
|
|
|
|
x_value: 1.2566366*2^0, y_value: 1.8238020*2^-1
|
|
|
|
|
|
|
|
x_value: 1.5707957*2^0, y_value: 1.8701699*2^-1
|
|
|
|
|
|
|
|
x_value: 1.8849551*2^0, y_value: 1.8547139*2^-1
|
|
|
|
|
|
|
|
x_value: 1.995567*2^1, y_value: 1.4683149*2^-1
|
|
|
|
|
|
|
|
x_value: 1.2566366*2^1, y_value: 1.1128282*2^-1
|
|
|
|
|
|
|
|
x_value: 1.4137159*2^1, y_value: 1.819164*2^-2
|
|
|
|
|
|
|
|
x_value: 1.5707957*2^1, y_value: -1.2364758*2^-5
|
|
|
|
|
|
|
|
x_value: 1.7278753*2^1, y_value: -1.6074185*2^-2
|
|
|
|
|
|
|
|
x_value: 1.8849551*2^1, y_value: -1.2982997*2^-1
|
|
|
|
|
|
|
|
x_value: 1.210171*2^2, y_value: -1.7928901*2^-1
|
|
|
|
|
|
|
|
x_value: 1.995567*2^2, y_value: -1.46367*2^0
|
|
|
|
|
|
|
|
x_value: 1.1780966*2^2, y_value: -1.46367*2^0
|
|
|
|
```
|